scholarly journals Measurement of the muon neutrino charged-current cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors

Author(s):  
K Abe ◽  
R Akutsu ◽  
A Ali ◽  
C Andreopoulos ◽  
L Anthony ◽  
...  

Abstract We report a measurement of the flux-integrated $\nu_{\mu}$ charged-current cross sections on water, hydrocarbon, and iron in the T2K on-axis neutrino beam with a mean neutrino energy of 1.5 GeV. The measured cross sections on water, hydrocarbon, and iron are $\sigma^{\rm{H_{2}O}}_{\rm{CC}} = (0.840\pm 0.010(\mathrm{stat.})^{+0.10}_{-0.08}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, $\sigma^{\rm{CH}}_{\rm{CC}} = (0.817\pm 0.007(\mathrm{stat.})^{+0.11}_{-0.08}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, and $\sigma^{\rm{Fe}}_{\rm{CC}} = (0.859\pm 0.003(\mathrm{stat.})^{+0.12}_{-0.10}(\mathrm{syst.}))\times10^{-38}\,\mathrm{cm}^2$/nucleon, respectively, for a restricted phase space of induced muons: $\theta_{\mu}<45^{\circ}$ and $p_{\mu}>$0.4 GeV/$c$ in the laboratory frame. The measured cross section ratios are ${\sigma^{\rm{H_{2}O}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}} = 1.028\pm 0.016(\mathrm{stat.})\pm 0.053(\mathrm{syst.})$, ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{H_{2}O}}_{\rm{CC}}} = 1.023\pm 0.012(\mathrm{stat.})\pm 0.058(\mathrm{syst.})$, and ${\sigma^{\rm{Fe}}_{\rm{CC}}}/{\sigma^{\rm{CH}}_{\rm{CC}}} = 1.049\pm 0.010(\mathrm{stat.})\pm 0.043(\mathrm{syst.})$. These results, with an unprecedented precision for the measurements of neutrino cross sections on water in the studied energy region, show good agreement with the current neutrino interaction models used in the T2K oscillation analyses.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
K Abe ◽  
N Akhlaq ◽  
R Akutsu ◽  
A Ali ◽  
C Alt ◽  
...  

Abstract We report measurements of the flux-integrated $\overline{\nu}_\mu$ and $\overline{\nu}_\mu+\nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced $\mu^\pm$ and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, $p_{\mu}&gt;400~{\rm MeV}/c$ and $\theta_{\mu}&lt;30^{\circ}$, in the laboratory frame. An absence of pions and protons in the detectable phase spaces of $p_{\pi}&gt;200~{\rm MeV}/c$, $\theta_{\pi}&lt;70^{\circ}$ and $p_{\rm p}&gt;600~{\rm MeV}/c$, $\theta_{\rm p}&lt;70^{\circ}$ is required. In this paper, both the $\overline{\nu}_\mu$ cross-sections and $\overline{\nu}_\mu+\nu_\mu$ cross-sections on water and hydrocarbon targets and their ratios are provided by using the D’Agostini unfolding method. The results of the integrated $\overline{\nu}_\mu$ cross-section measurements over this phase space are $\sigma_{\rm H_{2}O}=(1.082\pm0.068(\rm stat.)^{+0.145}_{-0.128}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}$, $\sigma_{\rm CH}=(1.096\pm0.054(\rm stat.)^{+0.132}_{-0.117}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH} = 0.987\pm0.078(\rm stat.)^{+0.093}_{-0.090}(\rm syst.)$. The $\overline{\nu}_\mu+\nu_\mu$ cross-section is $\sigma_{\rm H_{2}O} = (1.155\pm0.064(\rm stat.)^{+0.148}_{-0.129}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}$, $\sigma_{\rm CH}=(1.159\pm0.049(\rm stat.)^{+0.129}_{-0.115}(\rm syst.)) \times 10^{-39}\,{\rm cm^{2} / nucleon}$, and $\sigma_{\rm H_{2}O}/\sigma_{\rm CH}=0.996\pm0.069(\rm stat.)^{+0.083}_{-0.078}(\rm syst.)$.


2020 ◽  
Vol 29 (08) ◽  
pp. 2050062
Author(s):  
Mustafa Yiğit

Studies on the cross-sections of (n,n[Formula: see text]) reactions which are energetically possible, about 14 MeV neutrons are quite scarce. In this paper, the cross-sections of (n,n[Formula: see text] nuclear reactions at [Formula: see text]14–15 MeV are analyzed by using a new empirical formula based on the statistical theory. We show that neutron cross-sections are closely related to the [Formula: see text]-value of nuclear reaction, in particular for (n,n[Formula: see text]) channels. Results obtained with this empirical formula show good agreement with the available measured cross-section values. We hope that the estimations on the cross-sections using the present formalism may be helpful in future studies in this field.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Igor D. Kakorin ◽  
Konstantin S. Kuzmin ◽  
Vadim A. Naumov

AbstractWe suggest an empirical rule-of-thumb for calculating the cross sections of charged-current quasielastic (CCQE) and CCQE-like interactions of neutrinos and antineutrinos with nuclei. The approach is based on the standard relativistic Fermi-gas model and on the notion of neutrino energy dependent axial-vector mass of the nucleon, governed by a couple of adjustable parameters, one of which is the conventional charged-current axial-vector mass. The inelastic background contributions and final-state interactions are therewith simulated using GENIE 3 neutrino event generator. An extensive comparison of our calculations with earlier and current accelerator CCQE and CCQE-like data for different nuclear targets shows good or at least qualitative overall agreement over a wide energy range. We also discuss some problematical issues common to several competing contemporary models of the CCQE (anti)neutrino–nucleus scattering and to the current neutrino interaction generators.


2014 ◽  
Vol 29 (12) ◽  
pp. 1430011 ◽  
Author(s):  
Joseph Grange ◽  
Teppei Katori

The neutrino-induced charged-current quasi-elastic (CCQE, νl + n → l- + p or [Formula: see text]) interaction is the most abundant interaction around 1 GeV, and it is the most fundamental channel to study neutrino oscillations. Recently, MiniBooNE published both muon neutrino1 and muon anti-neutrino2 double differential cross-sections on carbon. In this review, we describe the details of these analyses and include some historical remarks.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044017
Author(s):  
M. Torti ◽  
F. Acerbi ◽  
A. Berra ◽  
M. Bonesini ◽  
A. Branca ◽  
...  

The knowledge of the initial flux, energy and flavor of current neutrino beams is the main limitation for a precise measurement of neutrino cross-sections. The ENUBET ERC project is studying a facility based on a narrow-band neutrino beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. In ENUBET, the identification of large-angle positrons from [Formula: see text] decays at single particle level can potentially reduce the [Formula: see text] flux uncertainty at the level of 1%. This setup would allow for an unprecedented measurement of the [Formula: see text] cross-section at the GeV scale. This input would be highly beneficial to reduce the budget of systematic uncertainties in the next long baseline oscillation projects. Furthermore, in narrow-band beams, the transverse position of the neutrino interaction at the detector can be exploited to determine a priori with significant precision the neutrino energy spectrum without relying on the final state reconstruction. This contribution will present the advances in the design and simulation of the hadronic beam line. Special emphasis will be given to a static focusing system of secondary mesons that can be coupled to a slow extraction proton scheme. The consequent reduction of particle rates and pile-up effects makes the determination of the [Formula: see text] flux through a direct monitoring of muons after the hadron dump viable, and paves the way to a time-tagged neutrino beam. Time-coincidences among the lepton at the source and the neutrino at the detector would enable an unprecedented purity and the possibility to reconstruct the neutrino kinematics at source on an event-by-event basis. We will also present the performance of positron tagger prototypes tested at CERN beamlines, a full simulation of the positron reconstruction chain and the expected physics reach of ENUBET.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


Sign in / Sign up

Export Citation Format

Share Document