scholarly journals Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
K. D. Kokkotas ◽  
R. A. Konoplya ◽  
A. Zhidenko
1997 ◽  
Vol 06 (01) ◽  
pp. 91-105 ◽  
Author(s):  
M. D. Pollock

The Wheeler–DeWitt equation for the wave function ψ is obtained from the two-dimensional world-sheet action for the bosonic string and the superstring, including higher-derivative terms, as the Schrödinger equation i ∂ ψ/ ∂τ = V(τ)ψ. The potential is given by the rate at which the world-sheet area is swept out, V(τ) = dA(τ)/dτ, and is positive semi-definite, allowing the existence of a ground state, corresponding to the absence of the string, with a non-vanishing probability density ψ ψ*. Integration of this equation yields the solution [Formula: see text], where [Formula: see text] is the action, minus the higher-derivative terms [Formula: see text] (and terms involving ∊ab in the case of the superstring), which, however, are constrained to vanish semi-classically, being constructed from the square of the equation of motion for the bosonic coordinates XA derived from [Formula: see text] alone. This path-integral expression for ψ is consistent with the operator replacements for the canonical momenta used in its derivation, and forms the basis of the approach due to Polyakov of summing over random surfaces. Comparison is made with the Schrödinger equations derived previously from the reduced, four-dimensional effective action for the heterotic superstring, and for the Schwarzschild black hole (by Tomimatsu), where the potential is also positive semi-definite, being (twice) the total mass of the Universe and the mass of the black hole, respectively, showing the unity of the method.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750088
Author(s):  
M. D. Pollock

If the classical gravitational Lagrangian contains higher-derivative terms [Formula: see text], where [Formula: see text], then vacuum solutions of the Einstein–Hilbert theory [Formula: see text] are subject to modification at sufficiently large spacetime curvatures. Previously, we have calculated the effective energy–momentum tensor [Formula: see text] due to the quartic gravitational terms [Formula: see text] of the heterotic superstring theory in the four-dimensional background spacetime of the Schwarzschild black hole, obtaining an expression which satisfies the strong energy condition, and thereby suggests that the [Formula: see text] might not remove the central singularity. This conjecture was put forward from a different viewpoint by Horowitz and Myers, who argued that a non-singular black-hole interior resulting from the [Formula: see text] would be unstable, necessitating reappraisal of the notion of a singular interior spacetime. Here, we show that the chief features of the solution can be simulated by a Bardeen-type ansatz, assuming the spherically symmetric line element [Formula: see text], where [Formula: see text], which, when [Formula: see text], can explain heuristically why [Formula: see text] in the shell region [Formula: see text] of a macroscopic black hole for which [Formula: see text], while [Formula: see text] remains finite at [Formula: see text].


2001 ◽  
Vol 16 (31) ◽  
pp. 5085-5099 ◽  
Author(s):  
SHIN'ICHI NOJIRI ◽  
SERGEI D. ODINTSOV ◽  
SACHIKO OGUSHI

Higher derivative bulk gravity (without Riemann tensor square term) admits AdS–Schwarzschild black hole as an exact solution. It is shown that induced brane geometry on such background is open, flat or closed FRW radiation dominated universe. Higher derivative terms contributions appear in the Hawking temperature, entropy and Hubble parameter via the redefinition of five-dimensional gravitational constant and AdS scale parameter. These higher derivative terms do not destroy the AdS-dual description of radiation represented by strongly-coupled CFT. The Cardy–Verlinde formula which expresses cosmological entropy as the square root from other parameters and entropies is derived in R2gravity. The corresponding cosmological entropy bounds are briefly discussed.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter discusses the Schwarzschild black hole. It demonstrates how, by a judicious change of coordinates, it is possible to eliminate the singularity of the Schwarzschild metric and reveal a spacetime that is much larger, like that of a black hole. At the end of its thermonuclear evolution, a star collapses and, if it is sufficiently massive, does not become stabilized in a new equilibrium configuration. The Schwarzschild geometry must therefore represent the gravitational field of such an object up to r = 0. This being said, the Schwarzschild metric in its original form is singular, not only at r = 0 where the curvature diverges, but also at r = 2m, a surface which is crossed by geodesics.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sharif ◽  
Sehrish Iftikhar

This paper is devoted to studying two interesting issues of a black hole with string cloud background. Firstly, we investigate null geodesics and find unstable orbital motion of particles. Secondly, we calculate deflection angle in strong field limit. We then find positions, magnifications, and observables of relativistic images for supermassive black hole at the galactic center. We conclude that string parameter highly affects the lensing process and results turn out to be quite different from the Schwarzschild black hole.


Sign in / Sign up

Export Citation Format

Share Document