scholarly journals Massive graviton dark matter with environment dependent mass: A natural explanation of the dark matter-baryon ratio

2017 ◽  
Vol 96 (10) ◽  
Author(s):  
Katsuki Aoki ◽  
Shinji Mukohyama
2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Lucien Heurtier ◽  
Fei Huang ◽  
Tim M.P. Tait

Abstract In the framework where the strong coupling is dynamical, the QCD sector may confine at a much higher temperature than it would in the Standard Model, and the temperature-dependent mass of the QCD axion evolves in a non-trivial way. We find that, depending on the evolution of ΛQCD, the axion field may undergo multiple distinct phases of damping and oscillation leading generically to a suppression of its relic abundance. Such a suppression could therefore open up a wide range of parameter space, resurrecting in particular axion dark-matter models with a large Peccei-Quinn scale fa ≫ 1012 GeV, i.e., with a lighter mass than the standard QCD axion.


2004 ◽  
Vol 220 ◽  
pp. 365-366
Author(s):  
J. R. Kuhn ◽  
D. Kocevski

A simple and natural explanation for the dynamics and morphology of the Local Group Dwarf Spheroidal galaxies, Draco (Dra) and Ursa Minor (UMi), is that they are weakly unbound stellar systems with no significant dark matter component. A gentle, but persistent, Milky Way (MW) tide has left them in their current kinematic and morphological state (the “parametric tidal excitation”). A new test of a dark matter dominated dS potential follows from a careful observation of the “clumpiness” of the dS stellar surface density.


2010 ◽  
Vol 19 (12) ◽  
pp. 2293-2300
Author(s):  
A. W. Thomas

We review recent progress in our understanding of the role of strange quarks in the structure of the nucleon. For the contribution to its mass the result is remarkably small, an order of magnitude smaller than commonly assumed. This has profound consequences for the searches for dark matter which are currently underway. There has also been remarkable progress in the understanding of hypernuclei. In particular, there is a very natural explanation at the quark level of why Λ-hypernuclei are bound whereas Σ-hypernuclei are not. The consequences for dense matter, for example in neutron stars, are not yet fully understood but we know they are significant.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Chun Liu ◽  
Yakefu Reyimuaji

Abstract A model, which extends the standard model with a new chiral U(1)′ gauge symmetry sector, for the eV-mass sterile neutrino is constructed. It is basically fixed by anomaly free conditions. The lightness of the sterile neutrino has a natural explanation. As a by product, this model provides a WIMP-like dark matter candidate.


2005 ◽  
Vol 94 (18) ◽  
Author(s):  
S. L. Dubovsky ◽  
P. G. Tinyakov ◽  
I. I. Tkachev

Universe ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 14 ◽  
Author(s):  
Vladimir A. Korotky ◽  
Eduard Masár ◽  
Yuri N. Obukhov

This paper analyzes the problem of global rotation in general relativity (GR) theory. Simple cosmological models with rotation and expansion are presented, which give a natural explanation of the modern values of the acceleration parameter at different red shifts without involving the concepts of “dark energy” and “dark matter”. It is shown that due to the smallness of the cosmological rotation, for its detection one should use observations that do not depend on the magnitude of the angular velocity of the Universe. Such tests include the effects of the cosmic mirror and the cosmic lens. For the first time on the basis of modern electronic catalogs the search on the celestial sphere of images of our Galaxy and other galaxies is made. Viable candidates for both effects have been found.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250146 ◽  
Author(s):  
HYUNG WON LEE ◽  
KYOUNG YEE KIM ◽  
YUN SOO MYUNG

We reexamine the massive graviton dark matter scenario (MGCDM) which was recently considered as an alternative to dark energy models. When introducing the native and effective equations of state (EoS), it is shown that there is no phantom phase in the evolution toward the far past. Also we show that the past accelerating phase arises from the interaction between massive graviton and cold dark matter.


2017 ◽  
Vol 916 ◽  
pp. 208-218 ◽  
Author(s):  
Cun Zhang ◽  
Ming-Yang Cui ◽  
Lei Feng ◽  
Yi-Zhong Fan ◽  
Zhong-Zhou Ren

Sign in / Sign up

Export Citation Format

Share Document