scholarly journals Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth

2018 ◽  
Vol 97 (2) ◽  
Author(s):  
Jaime Alvarez-Muñiz ◽  
Washington R. Carvalho ◽  
Kévin Payet ◽  
Andrés Romero-Wolf ◽  
Harm Schoorlemmer ◽  
...  
2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Jaime Alvarez-Muñiz ◽  
Washington R. Carvalho ◽  
Austin L. Cummings ◽  
Kévin Payet ◽  
Andrés Romero-Wolf ◽  
...  

2004 ◽  
Vol 19 (13n16) ◽  
pp. 1125-1132
Author(s):  
GUEY-LIN LIN

In this talk, we elaborate the strategy for detecting the Earth-skimming tau neutrinos. We first show that there are non-negligible astrophysical tau neutrino fluxes due to neutrino flavor oscillations. We then illustrate the idea of detecting Earth-skimming tau neutrinos. In particular, we point out that the tau-lepton flux resulting from neutrino-nucleon scatterings inside the earth is controlled by the tau-lepton range. We demonstrate this observation by showing the tau-lepton flux induced by the GZK tau-neutrino flux. The question on the energy resolutions of tau neutrinos in this detection strategy is briefly discussed.


2005 ◽  
Vol 20 (06) ◽  
pp. 1204-1211 ◽  
Author(s):  
J. JONES ◽  
I. MOCIOIU ◽  
I. SARCEVIC ◽  
M. H. RENO

Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above 106 GeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Bouzid Boussaha ◽  
Tariq Bitam

This paper is aimed at studying the feasibility of building an Earth-skimming cosmic tau neutrinos detector, with the aim of eventually identifying the ideal dimensions of a natural site mountain-valley for the detection of very high energy neutrinos tau range from 1 0 16 eV to 1 0 20 eV , as well as possibly locate one such site in Algeria. First, a Monte Carlo simulation of the neutrino-[mountain] matter interaction as well as the resulting decay of the tau lepton is conducted to determine the optimal dimensions of the mountain as well as the location of the tau decay in the valley. Second, a CORSIKA (COsmic Ray Simulation for KAscade) simulation with the CONEX option is conducted to track the evolution of the almost horizontal air shower initiated by the tau lepton. Many particles are produced, which are part of the shower components: electrons, muons, gammas, pions, etc. The study of the spatial distribution of these particles enables the discovery of the optimal width of the valley, and consequently, the distance at which to lay the detection network.


2019 ◽  
Author(s):  
Gabriel Lopez Castro

Originally thought as clean processes to study the hadronization of the weak currents, semileptonic tau lepton decays can be useful to set constraints on non-standard (NS) weak interactions. We study the effects of new interactions in \tau^- \to (\pi^-\eta,\pi^-\pi^0)\nu_{\tau}τ−→(π−η,π−π0)ντ decays and find that they are sensitive probes of these New Physics effects in the form of scalar and tensor interactions, respectively. Further improved measurements at Belle II will set limits on these scalar interactions that are similar to other low and high energy processes.


Author(s):  
Richard A. Posner

You wouldn’t see the asteroid, even though it was several miles in diameter, because it would be hurtling toward you at 15 to 25 miles a second. At that speed, the column of air between the asteroid and the earth’s surface would be compressed with such force that the column’s temperature would soar to several times that of the sun, incinerating everything in its path. When the asteroid struck, it would penetrate deep into the ground and explode, creating an enormous crater and ejecting burning rocks and dense clouds of soot into the atmosphere, wrapping the globe in a mantle of fiery debris that would raise surface temperatures by as much as 100 degrees Fahrenheit and shut down photosynthesis for years. The shock waves from the collision would have precipitated earthquakes and volcanic eruptions, gargantuan tidal waves, and huge forest fires. A quarter of the earth’s human population might be dead within 24 hours of the strike, and the rest soon after. But there might no longer be an earth for an asteroid to strike. In a high-energy particle accelerator, physicists bent on re-creating conditions at the birth of the universe collide the nuclei of heavy atoms, containing large numbers of protons and neutrons, at speeds near that of light, shattering these particles into their constituent quarks. Because some of these quarks, called strange quarks, are hyperdense, here is what might happen: A shower of strange quarks clumps, forming a tiny bit of strange matter that has a negative electric charge. Because of its charge, the strange matter attracts the nuclei in the vicinity (nuclei have a positive charge), fusing with them to form a larger mass of strange matter that expands exponentially. Within a fraction of a second the earth is compressed to a hyperdense sphere 100 meters in diameter, explodes in the manner of a supernova, and vanishes. By then, however, the earth might have been made uninhabitable for human beings and most other creatures by abrupt climate changes.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Yang Bai ◽  
Joshua Berger ◽  
Mrunal Korwar ◽  
Nicholas Orlofsky

Abstract Magnetically charged black holes (MBHs) are interesting solutions of the Standard Model and general relativity. They may possess a “hairy” electroweak-symmetric corona outside the event horizon, which speeds up their Hawking radiation and leads them to become nearly extremal on short timescales. Their masses could range from the Planck scale up to the Earth mass. We study various methods to search for primordially produced MBHs and estimate the upper limits on their abundance. We revisit the Parker bound on magnetic monopoles and show that it can be extended by several orders of magnitude using the large-scale coherent magnetic fields in Andromeda. This sets a mass-independent constraint that MBHs have an abundance less than 4 × 10−4 times that of dark matter. MBHs can also be captured in astrophysical systems like the Sun, the Earth, or neutron stars. There, they can become non-extremal either from merging with an oppositely charged MBH or absorbing nucleons. The resulting Hawking radiation can be detected as neutri- nos, photons, or heat. High-energy neutrino searches in particular can set a stronger bound than the Parker bound for some MBH masses, down to an abundance 10−7 of dark matter.


High energy cosmic neutrinos can be produced by protons and nuclei accelerated in cosmic sources (‘acceleration neutrinos) as well as by relic Big Bang particles, cosmic strings, etc. (neutrinos of non-acceleration origin). The most promising ‘acceleration’ sources of neutrinos are supernovae in our Galaxy and active galactic nuclei (AGN). Detectable diffuse fluxes of ‘ acceleration ’ neutrinos can be produced by AGN and during the ‘bright phase’ of galaxy evolution. During the past few years it has been realized that the detectable flux of high energy neutrinos can be also produced by the relic Big Bang particles. The possible sources are annihilation of the neutralinos accumulated inside the Earth and the Sun, decay of neutralinos (due to the weak breaking of R-parity), and the decay of exotic long-lived particles from the Big Bang.


Sign in / Sign up

Export Citation Format

Share Document