scholarly journals Bianchi IX cosmologies in the Einstein-Skyrme system in a sector with nontrivial topological charge

2019 ◽  
Vol 99 (4) ◽  
Author(s):  
Fabrizio Canfora ◽  
Nikolaos Dimakis ◽  
Alex Giacomini ◽  
Andronikos Paliathanasis
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony K. C. Tan ◽  
Pin Ho ◽  
James Lourembam ◽  
Lisen Huang ◽  
Hang Khume Tan ◽  
...  

AbstractMagnetic skyrmions are nanoscale spin textures touted as next-generation computing elements. When subjected to lateral currents, skyrmions move at considerable speeds. Their topological charge results in an additional transverse deflection known as the skyrmion Hall effect (SkHE). While promising, their dynamic phenomenology with current, skyrmion size, geometric effects and disorder remain to be established. Here we report on the ensemble dynamics of individual skyrmions forming dense arrays in Pt/Co/MgO wires by examining over 20,000 instances of motion across currents and fields. The skyrmion speed reaches 24 m/s in the plastic flow regime and is surprisingly robust to positional and size variations. Meanwhile, the SkHE saturates at ∼22∘, is substantially reshaped by the wire edge, and crucially increases weakly with skyrmion size. Particle model simulations suggest that the SkHE size dependence — contrary to analytical predictions — arises from the interplay of intrinsic and pinning-driven effects. These results establish a robust framework to harness SkHE and achieve high-throughput skyrmion motion in wire devices.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Sergey Nikolaev ◽  
Dmitry Pshenay-Severin ◽  
Yuri Ivanov ◽  
Alexander Burkov

Recently, it was shown that materials with certain crystal structures can exhibit multifold band crossings with large topological charges. CoSi is one such material that belongs to non-centrosymmetric space group P213 (#198) and posseses multifold band crossing points with a topological charge of 4. The change of crystal symmetry, e.g., by means of external stress, can lift the degeneracy and change its topological properties. In the present work, the influence of uniaxial deformation on the band structure and topological properties of CoSi is investigated on the base of ab initio calculations. The k·p Hamiltonian taking into account deformation is constructed on the base of symmetry consideration near the Γ and R points both with and without spin-orbit coupling. The transformation of multifold band crossings into nodes of other types with different topological charges, their shift both in energy and in reciprocal space and the tilt of dispersion around nodes are studied in detail depending on the direction of uniaxial deformation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Yoshihiko Abe ◽  
Yu Hamada ◽  
Koichi Yoshioka

Abstract We study the axion strings with the electroweak gauge flux in the DFSZ axion model and show that these strings, called the electroweak axion strings, can exhibit superconductivity without fermionic zeromodes. We construct three types of electroweak axion string solutions. Among them, the string with W-flux can be lightest in some parameter space, which leads to a stable superconducting cosmic string. We also show that a large electric current can flow along the string due to the Peccei-Quinn scale much higher than the electroweak scale. This large current induces a net attractive force between the axion strings with the same topological charge, which opens a novel possibility that the axion strings form Y-junctions in the early universe.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1485
Author(s):  
Wei Wang ◽  
Ruikang Zhao ◽  
Shilong Chang ◽  
Jing Li ◽  
Yan Shi ◽  
...  

In this paper, one spin-selected vortex metalens composed of silicon nanobricks is designed and numerically investigated at the mid-infrared band, which can produce vortex beams with different topological charges and achieve different spin lights simultaneously. Another type of spin-independent vortex metalens is also designed, which can focus the vortex beams with the same topological charge at the same position for different spin lights, respectively. Both of the two vortex metalenses can achieve high-efficiency focusing for different spin lights. In addition, the spin-to-orbital angular momentum conversion through the vortex metalens is also discussed in detail. Our work facilitates the establishment of high-efficiency spin-related integrated devices, which is significant for the development of vortex optics and spin optics.


2009 ◽  
Vol 17 (17) ◽  
pp. 14517 ◽  
Author(s):  
Yu Tokizane ◽  
Kazuhiko Oka ◽  
Ryuji Morita

2009 ◽  
Vol 11 (1) ◽  
pp. 013046 ◽  
Author(s):  
Valeria Garbin ◽  
Giovanni Volpe ◽  
Enrico Ferrari ◽  
Michel Versluis ◽  
Dan Cojoc ◽  
...  

1990 ◽  
Vol 05 (19) ◽  
pp. 3777-3786 ◽  
Author(s):  
L.F. CUGLIANDOLO ◽  
G. LOZANO ◽  
H. MONTANI ◽  
F.A. SCHAPOSNIK

We discuss the relation between different quantization approaches to topological field theories by deriving a connection between Bogomol’nyi and Langevin equations for stochastic processes which evolve towards an equilibrium state governed by the topological charge.


Sign in / Sign up

Export Citation Format

Share Document