Comment on “Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure”

2010 ◽  
Vol 104 (19) ◽  
Author(s):  
Raoul Dillenschneider ◽  
Eric Lutz
Author(s):  
Hao Zhang ◽  
Fu Zhao ◽  
John W. Sutherland

A time-indexed integer programing approach is developed to optimize the manufacturing schedule of a factory for minimal energy cost under real-time pricing (RTP) of electricity. The approach is demonstrated using a flow shop operating during different time periods (i.e., day shift, swing shift, and night shift) in a microgrid, which also serves residential and commercial users. Results show that electricity cost can be reduced by 6.2%, 12.3%, and 21.5% for the three time periods considered, respectively. Additionally, a 6.3% cost reduction can be achieved by the residential and commercial buildings through adopting energy-conscious control strategies in this specific case study example.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 165 ◽  
Author(s):  
Lucas Hackl ◽  
Robert H. Jonsson

We compute the minimal energy cost for extracting entanglement from the ground state of a bosonic or fermionic quadratic system. Specifically, we find the minimal energy increase in the system resulting from replacing an entangled pair of modes, sharing entanglement entropy ΔS, by a product state, and we show how to construct modes achieving this minimal energy cost. Thus, we obtain a protocol independent lower bound on the extraction of pure state entanglement from quadratic systems. Due to their generality, our results apply to a large range of physical systems, as we discuss with examples.


2010 ◽  
Vol 104 (6) ◽  
pp. 2985-2994 ◽  
Author(s):  
Dinant A. Kistemaker ◽  
Jeremy D. Wong ◽  
Paul L. Gribble

It has been widely suggested that the many degrees of freedom of the musculoskeletal system may be exploited by the CNS to minimize energy cost. We tested this idea by having subjects making point-to-point movements while grasping a robotic manipulandum. The robot created a force field chosen such that the minimal energy hand path for reaching movements differed substantially from those observed in a null field. The results show that after extended exposure to the force field, subjects continued to move exactly as they did in the null field and thus used substantially more energy than needed. Even after practicing to move along the minimal energy path, subjects did not adapt their freely chosen hand paths to reduce energy expenditure. The results of this study indicate that for point-to-point arm movements minimization of energy cost is not a dominant factor that influences how the CNS arrives at kinematics and associated muscle activation patterns.


Author(s):  
Joan A. Vaccaro ◽  
Stephen M. Barnett

Landauer argued that the process of erasing the information stored in a memory device incurs an energy cost in the form of a minimum amount of mechanical work. We find, however, that this energy cost can be reduced to zero by paying a cost in angular momentum or any other conserved quantity. Erasing the memory of Maxwell’s demon in this way implies that work can be extracted from a single thermal reservoir at a cost of angular momentum and an increase in total entropy. The implications of this for the second law of thermodynamics are assessed.


2009 ◽  
Vol 30 (2) ◽  
pp. 403-414 ◽  
Author(s):  
Clare Howarth ◽  
Claire M Peppiatt-Wildman ◽  
David Attwell

The brain's energy supply determines its information processing power, and generates functional imaging signals, which are often assumed to reflect principal neuron spiking. Using measured cellular properties, we analysed how energy expenditure relates to neural computation in the cerebellar cortex. Most energy is used on information processing by non-principal neurons: Purkinje cells use only 18% of the signalling energy. Excitatory neurons use 73% and inhibitory neurons 27% of the energy. Despite markedly different computational architectures, the granular and molecular layers consume approximately the same energy. The blood vessel area supplying glucose and O2 is spatially matched to energy consumption. The energy cost of storing motor information in the cerebellum was also estimated.


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


Sign in / Sign up

Export Citation Format

Share Document