scholarly journals Decreasing the Grain Boundary Diffusivity in Binary Alloys with Increasing Temperature

2010 ◽  
Vol 105 (23) ◽  
Author(s):  
Xiaomeng Shi ◽  
Jian Luo
2011 ◽  
Vol 65 (6) ◽  
pp. 513-515 ◽  
Author(s):  
Robert A. Brockman ◽  
Adam L. Pilchak ◽  
W. John Porter ◽  
Reji John

2018 ◽  
Vol 64 (246) ◽  
pp. 669-674
Author(s):  
COLIN M. SAYERS

ABSTRACTMeasured elastic stiffnesses of ice polycrystals decrease with increasing temperature due to a decrease in grain boundary stiffness with increasing temperature. In this paper, we represent grain boundaries as imperfectly bonded interfaces, across which traction is continuous, but displacement may be discontinuous. We express the additional compliance due to grain boundaries in terms of a second-rank and a fourth-rank tensor, which quantify the effect on elastic wave velocities of the orientation distribution as well as the normal and shear compliances of the grain boundaries. Measurement of the elastic stiffnesses allows determination of the components of these tensors. Application of the method to resonant ultrasound spectroscopy measurements made on ice polycrystals enables determination of the ratio BN/BS of the normal to shear compliance of the grain boundaries, which are found to be more compliant in shear than in compression. The ratio BN/BS is small at low temperatures, but increases as temperature increases, implying that the normal compliance increases relative to the shear compliance as temperature increases.


1990 ◽  
Vol 209 ◽  
Author(s):  
H. Y. Wang ◽  
R. Najafabadi ◽  
D. J. Srolovitz ◽  
R. Lesar

ABSTRACTA new, accurate method for determining equilibrium segregation to defects in solids is employed to examine the segregation of Cu to grain boundaries in Cu-Ni alloys. The results are in very good agreement with the ones given by Monte Carlo. This method is based upon a point approximation for the configurational entropy, an Einstein model for vibrational contributions to the free energy. To achieve the equilibrium state of a defect in an alloy the free energy is minimized with respect to atomic coordinates and composition of each site at constant chemical potential. One of the main advantages this new method enjoys over other methods such as Monte Carlo, is the efficiency with which the atomic structure of a defect, segregation and thermodynamic properties can be determined. The grain boundary free energy can either increase or decrease with increasing temperature due to the competition between energetic and configurational entropy terms. In general, the grain boundary free energy increases with temperature when the segregation is strongest.


2017 ◽  
Vol 100 (12) ◽  
pp. 5379-5384 ◽  
Author(s):  
Lin Feng ◽  
Shen J. Dillon

Author(s):  
Hidehiro Yoshida ◽  
Koji Morita ◽  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Takahisa Yamamoto ◽  
...  

1994 ◽  
Vol 357 ◽  
Author(s):  
Witold Lojkowski ◽  
Bogdan Palosz

AbstractThe aim of the paper is to explain the recently observed de-wetting grain boundary transition with increasing temperature. On the example of a bicrystal from the Fe-6at.%Si alloy, it was found recently that as temperature is increased, the following GB transitions take place: “solid” (or regular) GB-→“premelted” GB →“solid” GB. At the same time the wetting/de-wetting transitions have taken place. Another example of such GB behavior was discovered during sintering of alumina. The inverse melting behavior is explained as follows: low melting point impurities cause GB premelting at low temperatures, However de-segregation of impurities at high temperatures causes return of the GB structure to its regular “solid” state.


Sign in / Sign up

Export Citation Format

Share Document