scholarly journals Increasing contribution of grain boundary compliance to polycrystalline ice elasticity as temperature increases

2018 ◽  
Vol 64 (246) ◽  
pp. 669-674
Author(s):  
COLIN M. SAYERS

ABSTRACTMeasured elastic stiffnesses of ice polycrystals decrease with increasing temperature due to a decrease in grain boundary stiffness with increasing temperature. In this paper, we represent grain boundaries as imperfectly bonded interfaces, across which traction is continuous, but displacement may be discontinuous. We express the additional compliance due to grain boundaries in terms of a second-rank and a fourth-rank tensor, which quantify the effect on elastic wave velocities of the orientation distribution as well as the normal and shear compliances of the grain boundaries. Measurement of the elastic stiffnesses allows determination of the components of these tensors. Application of the method to resonant ultrasound spectroscopy measurements made on ice polycrystals enables determination of the ratio BN/BS of the normal to shear compliance of the grain boundaries, which are found to be more compliant in shear than in compression. The ratio BN/BS is small at low temperatures, but increases as temperature increases, implying that the normal compliance increases relative to the shear compliance as temperature increases.

2016 ◽  
Vol 10 (6) ◽  
pp. 2821-2829 ◽  
Author(s):  
Matthew J. Vaughan ◽  
Kasper van Wijk ◽  
David J. Prior ◽  
M. Hamish Bowman

Abstract. The elastic and anelastic properties of ice are of interest in the study of the dynamics of sea ice, glaciers, and ice sheets. Resonant ultrasound spectroscopy allows quantitative estimates of these properties and aids calibration of active and passive seismic data gathered in the field. The elastic properties and anelastic quality factor Q in laboratory-manufactured polycrystalline isotropic ice cores decrease (reversibly) with increasing temperature, but compressional-wave speed and attenuation prove most sensitive to temperature, indicative of pre-melting of the ice. This method of resonant ultrasound spectroscopy can be deployed in the field, for those situations where shipping samples is difficult (e.g. remote locations), or where the properties of ice change rapidly after extraction (e.g. in the case of sea ice).


2016 ◽  
Author(s):  
Matthew J. Vaughan ◽  
Kasper van Wijk ◽  
David J. Prior ◽  
M. Hamish Bowman

Abstract. The elastic and anelastic properties of ice are of interest in the study of the dynamics of sea ice, glaciers and ice sheets. Resonant ultrasound spectroscopy allows quantitative estimates of these properties and aids calibration of active and passive seismic data gathered in the field. The elastic constants and attenuation constant in man-made polycrystalline isotropic ice cores decrease (reversibly) with increasing temperature. All elastic properties and attenuation vary with ice temperature, but especially compressional-wave speed and attenuation prove sensitive to temperature, indicative of pre-melting of the ice. This method of resonant ultrasound can be deployed in the field, for those situations where shipping samples is difficult (e.g. remote locations), or where the properties of ice change rapidly after extraction (e.g., in the case of sea ice)


2006 ◽  
Vol 321-323 ◽  
pp. 1576-1579
Author(s):  
Yong Moo Cheong ◽  
Young Suk Kim

Zirconium alloys are used for many applications in nuclear components, such as the pressure tube material in a pressurized heavy water reactor, nuclear fuel cladding, etc. One of the problems during the operation of a nuclear reactor is the degradation of the zirconium alloys, which is due to an increase of the hydrogen content in the zirconium alloy. Therefore a non-destructive determination of the hydrogen concentration in zirconium alloy is one of the important issues that need to be addressed. The resonant ultrasound spectroscopy (RUS) technique is evaluated for a characterization of the hydrogen concentration in Zr-2.5Nb alloy. Referring to the terminal solid solubility for dissolution (TSSD) of Zr-2.5Nb alloy, the plot of the mechanical damping coefficient (Q-1) versus the temperature or the deviation of the resonant frequency for the temperature (df/dT) versus the temperature was correlated for the hydrogen concentration in Zr-2.5Nb alloy. It was found that the temperature at an abrupt change of the slope can be correlated with the hydrogen concentration of the Zr-2.5Nb alloy.


2019 ◽  
Vol 13 (5) ◽  
pp. 1495-1511 ◽  
Author(s):  
Baptiste Journaux ◽  
Thomas Chauve ◽  
Maurine Montagnat ◽  
Andrea Tommasi ◽  
Fabrice Barou ◽  
...  

Abstract. Torsion experiments were performed in polycrystalline ice at high temperature (0.97 Tm) to reproduce the simple shear kinematics that are believed to dominate in ice streams and at the base of fast-flowing glaciers. As clearly documented more than 30 years ago, under simple shear ice develops a two-maxima c axis crystallographic preferred orientation (CPO), which evolves rapidly into a single cluster CPO with a c axis perpendicular to the shear plane. Dynamic recrystallization mechanisms that occur in both laboratory conditions and naturally deformed ice are likely candidates to explain the observed CPO evolution. In this study, we use electron backscatter diffraction (EBSD) and automatic ice texture analyzer (AITA) to characterize the mechanisms accommodating deformation, the stress and strain heterogeneities that form under torsion of an initially isotropic polycrystalline ice sample at high temperature, and the role of dynamic recrystallization in accommodating these heterogeneities. These analyses highlight an interlocking microstructure, which results from heterogeneity-driven serrated grain boundary migration, and sub-grain boundaries composed of dislocations with a [c]-component Burgers vector, indicating that strong local stress heterogeneity develops, in particular, close to grain boundaries, even at high temperature and high finite shear strain. Based on these observations, we propose that nucleation by bulging, assisted by sub-grain boundary formation and followed by grain growth, is a very likely candidate to explain the progressive disappearance of the c axis CPO cluster at low angle to the shear plane and the stability of the one normal to it. We therefore strongly support the development of new polycrystal plasticity models limiting dislocation slip on non-basal slip systems and allowing for efficient accommodation of strain incompatibilities by an association of bulging and formation of sub-grain boundaries with a significant [c] component.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1383
Author(s):  
Petr Sedlák ◽  
Michaela Janovská ◽  
Lucie Bodnárová ◽  
Oleg Heczko ◽  
Hanuš Seiner

We discuss the suitability of laser-based resonant ultrasound spectroscopy (RUS) for the characterization of soft shearing modes in single crystals of shape memory alloys that are close to the transition temperatures. We show, using a numerical simulation, that the RUS method enables the accurate determination of the c′ shear elastic coefficient, even for very strong anisotropy, and without being sensitive to misorientations of the used single crystal. Subsequently, we apply the RUS method to single crystals of three typical examples of shape memory alloys (Cu-Al-Ni, Ni-Mn-Ga, and NiTi), and discuss the advantages of using the laser-based contactless RUS arrangement for temperature-resolved measurements of elastic constants.


1994 ◽  
Vol 357 ◽  
Author(s):  
Witold Lojkowski ◽  
Bogdan Palosz

AbstractThe aim of the paper is to explain the recently observed de-wetting grain boundary transition with increasing temperature. On the example of a bicrystal from the Fe-6at.%Si alloy, it was found recently that as temperature is increased, the following GB transitions take place: “solid” (or regular) GB-→“premelted” GB →“solid” GB. At the same time the wetting/de-wetting transitions have taken place. Another example of such GB behavior was discovered during sintering of alumina. The inverse melting behavior is explained as follows: low melting point impurities cause GB premelting at low temperatures, However de-segregation of impurities at high temperatures causes return of the GB structure to its regular “solid” state.


2005 ◽  
Vol 97 (1) ◽  
pp. 013532 ◽  
Author(s):  
Nobutomo Nakamura ◽  
Hirotsugu Ogi ◽  
Masahiko Hirao ◽  
Teruo Ono

Sign in / Sign up

Export Citation Format

Share Document