scholarly journals Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma

2016 ◽  
Vol 116 (9) ◽  
Author(s):  
G. S. Xu ◽  
B. N. Wan ◽  
H. Q. Wang ◽  
H. Y. Guo ◽  
V. Naulin ◽  
...  
1963 ◽  
Vol 41 (1) ◽  
pp. 113-131 ◽  
Author(s):  
S. N. Samaddar

Propagation of axially symmetric E-type and H-type modes of electromagnetic waves in a radially inhomogeneous plasma inside a wave guide is considered. For E-type modes conditions for the propagation of slow surface waves along the plasma–dielectric interface have been obtained. Approximate expressions for fields for wavelengths much smaller than the ratio of the gradient of the permittivity to the permittivity of the plasma are also given.It is also shown that if the dielectric constant ε(r) of the plasma vanishes along a particular surface r = r0, the electromagnetic fields for E-type modes behave singularly along this surface. In particular, if ε(r) has a simple zero at r0 ≠ 0, the radial and the longitudinal electric fields become singular as 1/ε(r0) and log ε(r0) respectively at r0. On the other hand, if ε(r) has a multiple zero at r0, the singularities of the above-mentioned fields will be as strong as a multiple pole at r0.Turning-point phenomena are also observed when the radial wave number [Formula: see text] vanishes along a surface. It is shown that the fields are oscillatory in the region [Formula: see text] and evanescent in the region [Formula: see text] for both E-type and H-type modes. The treatment of the singular behavior of the fields at ε(r) = 0, and of the turning-point phenomena at [Formula: see text], does not consider any boundary effect; therefore the results obtained here will be valid also for an inhomogeneous plasma column in free space.


2017 ◽  
Vol 24 (2) ◽  
pp. 022119 ◽  
Author(s):  
E. Z. Gusakov ◽  
M. A. Irzak ◽  
A. Yu. Popov ◽  
S. A. Khitrov ◽  
N. V. Teplova
Keyword(s):  

Author(s):  
Guo Meng ◽  
Philip Lauber ◽  
Xin Wang ◽  
Zhixin Lu

Abstract In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of Reversed Shear Alfv\'en Eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with Energetic Particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression $\Phi(s)=e^{- \sigma (s-s_0)^2}$ with complex parameters $\sigma$ and $s_0$, where $s$ is the normalized radial coordinate. The mode structure is distorted in opposite {manners} when the EP drive shifted from one side of $q_{min}$ to the other side, and specifically, a non-zero average radial wave number $\langle k_s\rangle$ with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number $\langle k_s\rangle$, corresponding to different initial EP density profiles with EP drive shifted away from the $q_{min}$.


1980 ◽  
Vol 5 ◽  
pp. 497-500
Author(s):  
Douglas Keeley

The structure of red giant stars allows non-radial oscillation modes which propagate as p-modes near the surface, to propagate below the convection zone as g-modes with very high radial wave number [Dziembowski (1971, 1977), Shibahashi and Osaki (1976)]. Under some conditions the oscillations in these two propagation regions can be treated as virtually independent normal modes [Shibahashi and Osaki (1976)]. This paper examines the situation in which this approximation is not good, and discusses possible observational consequences of the interaction of the two propagation regions.The linearized differential equations describing non-radial adiabatic oscillations in stars can be written in the form, 1a1b


2003 ◽  
Vol 74 (3) ◽  
pp. 1501-1505 ◽  
Author(s):  
S. Heuraux ◽  
S. Hacquin ◽  
F. da Silva ◽  
F. Clairet ◽  
R. Sabot ◽  
...  

2001 ◽  
Author(s):  
Chen Li ◽  
Jiadao Lin ◽  
Cetin Cetinkaya

Abstract Using Laplace and Hankel integral transforms in time and the radial coordinate, a fully-coupled thermoelastic formulation based on the equation of motion and heat equation is developed to study the effects of axial optical penetration on axisymmetric wave propagation in thermoelastic layers and/or layered structures. It is demonstrated that the optical penetration has no effect on the entries of the sextic transfer matrix, however it introduces an equivalent forcing term for all state variables for both surfaces of a thermoelastic layer as opposed to the surface heating case in which the heating effect is localized in the heating volume (the thermal skin). The thickness of thermal skin depends on the light intensity modulation frequency while the optical penetration typically depends only on the wavelength of the light. This additional forcing vector is a function of the light intensity modulation frequency, the radial wave number, penetration decay rate, as well as thermoelastic material properties. Complexities in wavefields due to the nature of the forcing term are demonstrated and discussed. A thin copper layer with hypothetical penetration properties is considered for the demonstration of the current formulation.


1966 ◽  
Vol 93 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. M. Sams
Keyword(s):  

2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2020 ◽  
Author(s):  
Egle Maximowitsch ◽  
Tatiana Domratcheva

Photoswitching of phytochrome photoreceptors between red-absorbing (Pr) and far-red absorbing (Pfr) states triggers light adaptation of plants, bacteria and other organisms. Using quantum chemistry, we elucidate the color-tuning mechanism of phytochromes and identify the origin of the Pfr-state red-shifted spectrum. Spectral variations are explained by resonance interactions of the protonated linear tetrapyrrole chromophore. In particular, hydrogen bonding of pyrrole ring D with the strictly conserved aspartate shifts the positive charge towards ring D thereby inducing the red spectral shift. Our MD simulations demonstrate that formation of the ring D–aspartate hydrogen bond depends on interactions between the chromophore binding domain (CBD) and phytochrome specific domain (PHY). Our study guides rational engineering of fluorescent phytochromes with a far-red shifted spectrum.


Author(s):  
Key Fonseca de Lima ◽  
Nilson Barbieri ◽  
Fernando Jun Hattori Terashima ◽  
Vinicius Antonio Grossl ◽  
Nelson Legat Filho

Sign in / Sign up

Export Citation Format

Share Document