scholarly journals Giant Transport Anisotropy in ReS2 Revealed via Nanoscale Conducting-Path Control

2021 ◽  
Vol 127 (13) ◽  
Author(s):  
Dawei Li ◽  
Shuo Sun ◽  
Zhiyong Xiao ◽  
Jingfeng Song ◽  
Ding-Fu Shao ◽  
...  
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


2020 ◽  
Vol 140 (7) ◽  
pp. 364-371
Author(s):  
Kenta Torishima ◽  
Kazuhiro Shimura ◽  
Mitsuhide Sato ◽  
Tsutomu Mizuno

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Qianheng Du ◽  
Lijun Wu ◽  
Huibo Cao ◽  
Chang-Jong Kang ◽  
Christie Nelson ◽  
...  

AbstractIron diantimonide is a material with the highest known thermoelectric power. By combining scanning transmission electron microscopic study with electronic transport neutron, X-ray scattering, and first principle calculation, we identify atomic defects that control colossal thermopower magnitude and nanoprecipitate clusters with Sb vacancy ordering, which induce additional phonon scattering and substantially reduce thermal conductivity. Defects are found to cause rather weak but important monoclinic distortion of the unit cell Pnnm → Pm. The absence of Sb along [010] for high defect concentration forms conducting path due to Fe d orbital overlap. The connection between atomic defect anisotropy and colossal thermopower in FeSb2 paves the way for the understanding and tailoring of giant thermopower in related materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhizhan Qiu ◽  
Matthew Holwill ◽  
Thomas Olsen ◽  
Pin Lyu ◽  
Jing Li ◽  
...  

AbstractThe discovery of two-dimensional (2D) magnetism combined with van der Waals (vdW) heterostructure engineering offers unprecedented opportunities for creating artificial magnetic structures with non-trivial magnetic textures. Further progress hinges on deep understanding of electronic and magnetic properties of 2D magnets at the atomic scale. Although local electronic properties can be probed by scanning tunneling microscopy/spectroscopy (STM/STS), its application to investigate 2D magnetic insulators remains elusive due to absence of a conducting path and their extreme air sensitivity. Here we demonstrate that few-layer CrI3 (FL-CrI3) covered by graphene can be characterized electronically and magnetically via STM by exploiting the transparency of graphene to tunneling electrons. STS reveals electronic structures of FL-CrI3 including flat bands responsible for its magnetic state. AFM-to-FM transition of FL-CrI3 can be visualized through the magnetic field dependent moiré contrast in the dI/dV maps due to a change of the electronic hybridization between graphene and spin-polarised CrI3 bands with different interlayer magnetic coupling. Our findings provide a general route to probe atomic-scale electronic and magnetic properties of 2D magnetic insulators for future spintronics and quantum technology applications.


2007 ◽  
Vol 12 (5) ◽  
pp. 311-317 ◽  
Author(s):  
Vindhya Kunduru ◽  
Shalini Prasad

We demonstrate a technique to detect protein biomarkers contained in vulnerable coronary plaque using a platform-based microelectrode array (MEA). The detection scheme is based on the property of high specificity binding between antibody and antigen similar to most immunoassay techniques. Rapid clinical diagnosis can be achieved by detecting the amount of protein in blood by analyzing the protein's electrical signature. Polystyrene beads which act as transportation agents for the immobile proteins (antigen) are electrically aligned by application of homogenous electric fields. The principle of electrophoresis is used to produce calculated electrokinetic movement among the anti-C-reactive protein (CRP), or in other words antibody funtionalized polystyrene beads. The electrophoretic movement of antibody-functionalized polystyrene beads results in the formation of “Microbridges” between the two electrodes of interest which aid in the amplification of the antigen—antibody binding event. Sensitive electrical equipment is used for capturing the amplified signal from the “Microbridge” which essentially behaves as a conducting path between the two electrodes. The technique circumvents the disadvantages of conventional protein detection methods by being rapid, noninvasive, label-free, repeatable, and inexpensive. The same principle of detection can be applied for any receptor—ligand-based system because the technique is based only on the volume of the analyte of interest. Detection of the inflammatory coronary disease biomarker CRP is achieved at concentration levels spanning over the lower microgram/milliliter to higher order nanogram/milliliter ranges.


Author(s):  
G. Duelen ◽  
J. Held ◽  
U. Kirchhoff ◽  
H. Munch
Keyword(s):  

Author(s):  
Adrian C. Orifici ◽  
Phisit Wongwichit ◽  
Nuth Wiwatanawongsa

Sign in / Sign up

Export Citation Format

Share Document