Two-Dimensional Melting Far from Equilibrium in a Granular Monolayer

2005 ◽  
Vol 95 (9) ◽  
Author(s):  
J. S. Olafsen ◽  
J. S. Urbach
2000 ◽  
Vol 5 (2) ◽  
pp. 107-120 ◽  
Author(s):  
G. Radons ◽  
G. C. Hartmann ◽  
H. H. Diebner ◽  
O. E. Rossler

The baker’s map, invented by Eberhard Hopf in 1937, is an intuitively accesible, two-dimensional chaos-generating discrete dynamical system. This map, which describes the transformation of an idealized two-dimensional dough by stretching, cutting and piling, is non-dissipative. Nevertheless the “x” variable is identical with the dissipative, one-dimensional Bernoulli-shift-generating map. The generalization proposed here takes up ideas of Yaacov Sinai in a modified form. It has a staircase-like shape, with every next step half as high as the preceding one. Each pair of neighboring elements exchanges an equal volume (area) during every iteration step in a scaled manner. Since the density of iterated points is constant, the thin tail (to the right, say) is visited only exponentially rarely. This observation already explains the map's main qualitative behavior: The “x” variable shows “flares”. The time series of this variable is closely analogous to that of a flaring-type dissipative dynamical system – like those recently described in an abstract economic model. An initial point starting its journey in the tale (or “antenna”, if we tilt the map upwards by 90 degrees) is predictably attracted by the broad left hand (bottom) part, in order to only very rarely venture out again to the tip. Yet whenever it does so, it thereby creates, with the top of a flare, a new “far-from-equilibrium” initial condition, in this reversible system. The system therefore qualifies as a discrete analogue to a far-from-equilibrium multiparticle Hamiltonian system. The height of the flare hereby corresponds to the momentary height of theHfunction of a gas. An observable which is even more closely related to the momentary negative entropy was recently described. Dependent on the numerical accuracy chosen, “Poincaré cycles” of two different types (periodic and nonperiodic) can be observed for the first time.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. T. Greenaway ◽  
P. Kumaravadivel ◽  
J. Wengraf ◽  
L. A. Ponomarenko ◽  
A. I. Berdyugin ◽  
...  

AbstractOscillatory magnetoresistance measurements on graphene have revealed a wealth of novel physics. These phenomena are typically studied at low currents. At high currents, electrons are driven far from equilibrium with the atomic lattice vibrations so that their kinetic energy can exceed the thermal energy of the phonons. Here, we report three non-equilibrium phenomena in monolayer graphene at high currents: (i) a “Doppler-like” shift and splitting of the frequencies of the transverse acoustic (TA) phonons emitted when the electrons undergo inter-Landau level (LL) transitions; (ii) an intra-LL Mach effect with the emission of TA phonons when the electrons approach supersonic speed, and (iii) the onset of elastic inter-LL transitions at a critical carrier drift velocity, analogous to the superfluid Landau velocity. All three quantum phenomena can be unified in a single resonance equation. They offer avenues for research on out-of-equilibrium phenomena in other two-dimensional fermion systems.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Sign in / Sign up

Export Citation Format

Share Document