scholarly journals Holographic Derivation of Entanglement Entropy from the anti–de Sitter Space/Conformal Field Theory Correspondence

2006 ◽  
Vol 96 (18) ◽  
Author(s):  
Shinsei Ryu ◽  
Tadashi Takayanagi
1999 ◽  
Vol 14 (06) ◽  
pp. 815-843 ◽  
Author(s):  
M. J. DUFF

There has recently been a revival of interest in anti-de-Sitter space (AdS), brought about by the conjectured duality between physics in the bulk of AdS and a conformal field theory on the boundary. Since the whole subject of branes, singletons and superconformal field theories on the AdS boundary was an active area of research about ten years ago, we begin with a historical review, including the idea of the "membrane at the end of the universe." We then compare the old and new approaches and discuss some new results on AdS 5 × S5 and AdS 3 × S3.


2012 ◽  
Vol 27 (09) ◽  
pp. 1250048 ◽  
Author(s):  
IBRAHIMA BAH ◽  
LEOPOLDO A. PANDO ZAYAS ◽  
CÉSAR A. TERRERO-ESCALANTE

Using a holographic proposal for the geometric entropy we study its behavior in the geometry of Schwarzschild black holes in global AdSp for p = 3, 4, 5. Holographically, the entropy is determined by a minimal surface. On the gravity side, due to the presence of a horizon on the background, generically there are two solutions to the surfaces determining the entanglement entropy. In the case of AdS3, the calculation reproduces precisely the geometric entropy of an interval of length l in a two-dimensional conformal field theory with periodic boundary conditions. We demonstrate that in the cases of AdS4 and AdS5 the sign of the difference of the geometric entropies changes, signaling a transition. Euclideanization implies that various embedding of the holographic surface are possible. We study some of them and find that the transitions are ubiquitous. In particular, our analysis renders a very intricate phase space, showing, for some ranges of the temperature, up to three branches. We observe a remarkable universality in the type of results we obtain from AdS4 and AdS5.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Andrew Loveridge

Abstract Spacetime boundaries with canonical Neuman or Dirichlet conditions preserve conformal invarience, but “mixed” boundary conditions which interpolate linearly between them can break conformal symmetry and generate interesting Renormalization Group flows even when a theory is free, providing soluble models with nontrivial scale dependence. We compute the (Rindler) entanglement entropy for a free scalar field with mixed boundary conditions in half Minkowski space and in Anti-de Sitter space. In the latter case we also compute an additional geometric contribution, which according to a recent proposal then collectively give the 1/N corrections to the entanglement entropy of the conformal field theory dual. We obtain some perturbatively exact results in both cases which illustrate monotonic interpolation between ultraviolet and infrared fixed points. This is consistent with recent work on the irreversibility of renormalization group, allowing some assessment of the aforementioned proposal for holographic entanglement entropy and illustrating the generalization of the g-theorem for boundary conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document