scholarly journals Control of the coupling strength and linewidth of a cavity magnon-polariton

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Isabella Boventer ◽  
Christine Dörflinger ◽  
Tim Wolz ◽  
Rair Macêdo ◽  
Romain Lebrun ◽  
...  
Keyword(s):  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Mustafa A. Amin ◽  
Andrew J. Long ◽  
Zong-Gang Mou ◽  
Paul M. Saffin

Abstract We investigate the production of photons from coherently oscillating, spatially localized clumps of axionic fields (oscillons and axion stars) in the presence of external electromagnetic fields. We delineate different qualitative behaviour of the photon luminosity in terms of an effective dimensionless coupling parameter constructed out of the axion-photon coupling, and field amplitude, oscillation frequency and radius of the axion star. For small values of this dimensionless coupling, we provide a general analytic formula for the dipole radiation field and the photon luminosity per solid angle, including a strong dependence on the radius of the configuration. For moderate to large coupling, we report on a non-monotonic behavior of the luminosity with the coupling strength in the presence of external magnetic fields. After an initial rise in luminosity with the coupling strength, we see a suppression (by an order of magnitude or more compared to the dipole radiation approximation) at moderately large coupling. At sufficiently large coupling, we find a transition to a regime of exponential growth of the luminosity due to parametric resonance. We carry out 3+1 dimensional lattice simulations of axion electrodynamics, at small and large coupling, including non-perturbative effects of parametric resonance as well as backreaction effects when necessary. We also discuss medium (plasma) effects that lead to resonant axion to photon conversion, relevance of the coherence of the soliton, and implications of our results in astrophysical and cosmological settings.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950351 ◽  
Author(s):  
Dawei Ding ◽  
Xiaolei Yao ◽  
Hongwei Zhang

In this paper, the complex projection synchronization problem of fractional complex-valued dynamic networks is investigated. Considering the time-varying coupling and unknown parameters of the fractional order complex network, several decentralized adaptive strategies are designed to adjust the coupling strength and controller feedback gain in order to investigate the complex projection synchronization problem of the system. Moreover, based on the designed identification law, the uncertain parameters in the network can be estimated. Using adaptive law which balances the time-varying coupling strength and the feedback gain of the controller, some sufficient conditions are obtained for the complex projection synchronization of complex networks. Finally, numerical simulation examples are provided to illustrate the efficiency of the complex projection synchronization strategies of the fractional order complex dynamic networks.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250026 ◽  
Author(s):  
CHENG-SHUN WANG ◽  
YU-FANG CHEN ◽  
JING-JIN XIAO

Properties of the excited state of strong-coupling impurity bound polaron in an asymmetric quantum dot are studied by using linear combination operator and unitary transformation methods. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the impurity bound polaron as functions of the transverse and the longitudinal effective confinement lengths of the dot, the electron–phonon coupling strength and the Coulomb bound potential were derived. Our numerical results show that they will increase with decreasing the effective confinement lengths, due to interesting quantum size confining effects. But they are an increasing functions of the Coulomb bound potential. The first internal excited state energy is a decreasing function of the electron–phonon coupling strength whereas the transition frequency and the excitation energy are an increasing one of the electron–phonon coupling strength.


2016 ◽  
Vol 33 (3) ◽  
pp. 033401
Author(s):  
Liang-Hui Huang ◽  
Peng-Jun Wang ◽  
Zeng-Ming Meng ◽  
Peng Peng ◽  
Liang-Chao Chen ◽  
...  

1999 ◽  
Vol 09 (10) ◽  
pp. 2105-2126 ◽  
Author(s):  
TAO YANG ◽  
LEON O. CHUA

Small-world phenomenon can occur in coupled dynamical systems which are highly clustered at a local level and yet strongly coupled at the global level. We show that cellular neural networks (CNN's) can exhibit "small-world phenomenon". We generalize the "characteristic path length" from previous works on "small-world phenomenon" into a "characteristic coupling strength" for measuring the average coupling strength of the outputs of CNN's. We also provide a simplified algorithm for calculating the "characteristic coupling strength" with a reasonable amount of computing time. We define a "clustering coefficient" and show how it can be calculated by a horizontal "hole detection" CNN, followed by a vertical "hole detection" CNN. Evolutions of the game-of-life CNN with different initial conditions are used to illustrate the emergence of a "small-world phenomenon". Our results show that the well-known game-of-life CNN is not a small-world network. However, generalized CNN life games whose individuals have strong mobility and high survival rate can exhibit small-world phenomenon in a robust way. Our simulations confirm the conjecture that a population with a strong mobility is more likely to qualify as a small world. CNN games whose individuals have weak mobility can also exhibit a small-world phenomenon under a proper choice of initial conditions. However, the resulting small worlds depend strongly on the initial conditions, and are therefore not robust.


2001 ◽  
Vol 37 (4) ◽  
pp. 2411-2413 ◽  
Author(s):  
You Xu ◽  
Jiehui Yang ◽  
Xijuan Zhang ◽  
Fang Zhang ◽  
M. Guillot

2008 ◽  
Vol 22 (24) ◽  
pp. 4153-4161 ◽  
Author(s):  
YU QIAN ◽  
YU XUE ◽  
GUANG-ZHI CHEN

A unidirectional coupling method to successfully suppress spiral waves in excitable media is proposed. It is shown that this control method has high control efficiency and is robust. It adapts to control of spiral waves for catalytic CO oxidation on platinum as well as for the FHN model. The power law n ~ c-k of control time steps n versus the coupling strength c for different models has been obtained.


2001 ◽  
Vol 11 (08) ◽  
pp. 2245-2253
Author(s):  
WEN-XIN QIN

Applying invariant manifold theorem, we study the existence of generalized synchronization of a coupled system, with local systems being different sine circle maps. We specify a range of parameters for which the coupled system achieves generalized synchronization. We also investigate the relation between generalized synchronization, predictability and equivalence of dynamical systems. If the parameters are restricted in the specified range, then all the subsystems are topologically equivalent, and each subsystem is predictable from any other subsystem. Moreover, these subsystems are frequency locked even if the frequencies are greatly different in the absence of coupling. If the local systems are identical without coupling, then the widths of the phase-locked intervals of the coupled system are the same as those of the individual map and are independent of the coupling strength.


Sign in / Sign up

Export Citation Format

Share Document