scholarly journals Identifying nonclassicality from experimental data using artificial neural networks

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Valentin Gebhart ◽  
Martin Bohmann ◽  
Karsten Weiher ◽  
Nicola Biagi ◽  
Alessandro Zavatta ◽  
...  
2013 ◽  
Vol 13 (5) ◽  
pp. 273-278 ◽  
Author(s):  
P. Koštial ◽  
Z. Jančíková ◽  
D. Bakošová ◽  
J. Valíček ◽  
M. Harničárová ◽  
...  

Abstract The paper deals with the application of artificial neural networks (ANN) to tires’ own frequency (OF) prediction depending on a tire construction. Experimental data of OF were obtained by electronic speckle pattern interferometry (ESPI). A very good conformity of both experimental and predicted data sets is presented here. The presented ANN method applied to ESPI experimental data can effectively help designers to optimize dimensions of tires from the point of view of their noise.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Leonard Mihaly Cozmuta ◽  
Camelia Varga ◽  
Monica Marian ◽  
Anca Mihaly Cozmuta ◽  
Tutu Hlanganani

Artificial neuronal networks are widely used in different fields such as finance, medicine, engineering, geology, chemistry, physics in order to predict, classify and control the development of different processes. The paper presents experimental data on the adsorption process of copper from aqueous solutions and compares it with theoretical data obtained by mathematical modeling using artificial neural networks (ANN). The aim of the paper is to demonstrate that ANN ensure a high accuracy in the mathematical modeling of the process. We have collected experimental data by using synthetic solutions with different pH and cooper ions concentrations, which were retained on a PUROLITE S930 cationic resin. Both experimental and theoretical data obtained using ANN show the correlation between factors which influence the ionic exchange process (pH, temperature, initial copper concentration, activation energy).


Author(s):  
Ehsan Sarshari ◽  
Philippe Mullhaupt

Scour can have the effect of subsidence of the piers in bridges, which can ultimately lead to the total collapse of these systems. Effective bridge design needs appropriate information on the equilibrium depth of local scour. The flow field around bridge piers is complex so that deriving a theoretical model for predicting the exact equilibrium depth of local scour seems to be near impossible. On the other hand, the assessment of empirical models highly depends on local conditions, which is usually too conservative. In the present study, artificial neural networks are used to estimate the equilibrium depth of the local scour around bridge piers. Assuming such equilibrium depth is a function of five variables, and using experimental data, a neural network model is trained to predict this equilibrium depth. Multilayer neural networks with backpropagation algorithm with different learning rules are investigated and implemented. Different methods of data normalization besides the effect of initial weightings and overtraining phenomenon are addressed. The results show well adoption of the neural network predictions against experimental data in comparison with the estimation of empirical models.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2426
Author(s):  
Tae Young Kim

This study evaluated the potential of artificial neural networks (ANNs) to predict the system-level performance of a thermoelectric generator (TEG), whose performance depends on various variables including engine load, engine rotation speed, and external load resistance. Therefore, a Python code was developed to determine an optimal ANN structure by tracking the training/prediction errors of the ANN as a function of the number of hidden layers and nodes of hidden layers. The optimal ANN was trained using 484 output current (I)–load resistance (R) datasets obtained under three different engine rotation speeds and five different engine loads. The prediction accuracy of the ANN was validated by comparing 88 I–R datasets reproduced by the ANN using experimental data that were not used for training. In the validation procedure, differences of only 3.49% and 2.59% were observed in the experimental and ANN-predicted output power obtained for the 1000 rpm–0.8 MPa brake mean effective pressure (BMEP) and 1500 rpm–0.4 MPa BMEP scenarios, respectively. The exhaust gas flow characteristics were used for training and validation to predict the pumping loss caused by the installation of the TEG in the middle of the exhaust tailpipe with high accuracy. The results demonstrated that the ANN effectively reproduced datasets to fill the gaps between the discretized experimental results for all the experimental scenarios without any noticeable overfitting and underfitting. The net power gain obtained by the ANN exhibited a clear peak point for the engine rotation speed of 2000 rpm, which is difficult to obtain using experimental data.


Sign in / Sign up

Export Citation Format

Share Document