scholarly journals Coupling a Superconducting Quantum Circuit to a Phononic Crystal Defect Cavity

2018 ◽  
Vol 8 (3) ◽  
Author(s):  
Patricio Arrangoiz-Arriola ◽  
E. Alex Wollack ◽  
Marek Pechal ◽  
Jeremy D. Witmer ◽  
Jeff T. Hill ◽  
...  
2021 ◽  
Vol 129 (14) ◽  
pp. 145104
Author(s):  
Tian-Xue Ma ◽  
Quan-Shui Fan ◽  
Chuanzeng Zhang ◽  
Yue-Sheng Wang

2012 ◽  
Vol 132 (5) ◽  
pp. 686-690
Author(s):  
Yusuke Kanno ◽  
Kenji Tsuruta ◽  
Kazuhiro Fujimori ◽  
Hideki Fukano ◽  
Shigeji Nogi

Author(s):  
Edson Jansen Pedrosa de Miranda Junior ◽  
Jose Maria Campos dos Santos

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


2021 ◽  
Vol 118 (22) ◽  
pp. 224104
Author(s):  
Yihao Song ◽  
Yanfeng Shen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7338-7346
Author(s):  
Sunjae Kim ◽  
Heejoong Ryou ◽  
In Gyu Lee ◽  
Myunghun Shin ◽  
Byung Jin Cho ◽  
...  

The photocatalytic activity is correlated with different parameters affecting the photocatalytic reactions; redox potential (RP), surface area (SA), crystal defect (CD), oxygen defect (OD), and grain-boundary induced defect (GD).


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


Sign in / Sign up

Export Citation Format

Share Document