scholarly journals Plasma Membrane Depolarization Induced by Abscisic Acid in Arabidopsis Suspension Cells Involves Reduction of Proton Pumping in Addition to Anion Channel Activation, Which Are Both Ca2+ Dependent

2004 ◽  
Vol 135 (1) ◽  
pp. 231-243 ◽  
Author(s):  
Mathias Brault ◽  
Zahia Amiar ◽  
Anne-Marie Pennarun ◽  
Michèle Monestiez ◽  
Zongshen Zhang ◽  
...  

The plant growth regulator abscisic acid triggers closing of stomata in the leaf epidermis in response to water stress. Recent tracer flux studies, patch-clamp studies, fluorometric Ca 2+ measurements and microelectrode experiments have provided insight into primary transduction mechanisms by which abscisic acid causes stomatal closing. Data show that abscisic acid activates non-selective Ca 2+ permeable ion channels in the plasma membrane of guard cells. The resulting elevation in the free Ca 2+ concentration in the cytosol of guard cells, and the resulting membrane depolarization as well as other unidentified Ca 2+ independent mechanisms are suggested to contribute to activation of voltage- and second messenger-dependent anion channels and outward rectifying K + channels. Recent data suggest the involvement of two types of anion channels in the regulation of stomatal movements, which provide highly distinct mechanisms for anion efflux and depolarization. A novely characterized ‘S-type’ anion channel is likely to provide a key mechanism for long-term depolarization and sustained anion efflux during closing of stomata. Patch-clamp studies have revealed the presence of a network of K + , anion and non-selective Ca 2+ -permeable channels in the plasma membrane of a higher plant cell. The integrated control of these guard cell ion channels by abscisic acid can provide control over K + and anion efflux required for stomatal closing.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


1985 ◽  
Vol 37 (3) ◽  
pp. 189-193 ◽  
Author(s):  
Maria Cecilia Cocucci ◽  
Maria Ida De Michelis ◽  
Maria Chiara Pugliarello ◽  
Franca Rasi-Caldogno

1988 ◽  
Vol 107 (6) ◽  
pp. 2389-2399 ◽  
Author(s):  
J D Siliciano ◽  
D A Goodenough

Using the monoclonal antibody R26.4, we have previously identified a approximately 225-kD peripheral membrane protein, named ZO-1, that is uniquely associated with the tight junction (zonula occludens) in a variety of epithelia including the Madin-Darby canine kidney (MDCK) epithelial cell line (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766). In this study we have analyzed the effects of cell-cell contact and extracellular calcium on the localization and the solubility of ZO-1. In confluent monolayers under normal calcium conditions, ZO-1 immunoreactivity is found exclusively at the plasma membrane in the region of the junctional complex. If MDCK cells are maintained in spinner culture under low calcium conditions, ZO-1 is diffusely organized within the cytoplasm. After the plating of suspension cells at high cell density in medium with normal calcium concentrations, ZO-1 becomes localized to the plasma membrane at sites of cell-cell contact within 5 h in a process that is independent of de novo protein synthesis. However, if suspension cells are plated at high density in low calcium medium or if suspension cells are plated at low cell density in normal calcium growth medium, ZO-1 remains diffusely organized. ZO-1 localization also becomes diffuse in monolayers that have been established in normal calcium medium and then subsequently switched into low calcium medium. These results suggest that both extracellular calcium and cell-cell contact are necessary for normal localization of ZO-1 to the plasma membrane. An analysis of the solubility properties of ZO-1 from suspension cells and monolayers revealed that high salt, nonionic detergent, and a buffer containing chelators were somewhat more effective at solubilizing ZO-1 from suspension cells than from monolayers.


Author(s):  
Md Tahjib-Ul-Arif ◽  
Shintaro Munemasa ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Yoshiyuki Murata

Abstract Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


Sign in / Sign up

Export Citation Format

Share Document