scholarly journals Spatial Distribution of Turgor and Root Growth at Low Water Potentials

1991 ◽  
Vol 96 (2) ◽  
pp. 438-443 ◽  
Author(s):  
William G. Spollen ◽  
Robert E. Sharp
2005 ◽  
Vol 33 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Adriana Sánchez-Urdaneta ◽  
Cecilia Peña-Valdivia ◽  
Carlos Trejo ◽  
J. Aguirre R. ◽  
Elizabeth Cárdenas S.

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0190032 ◽  
Author(s):  
Xiaoyu Zhi ◽  
Yingchun Han ◽  
Yabing Li ◽  
Guoping Wang ◽  
Lu Feng ◽  
...  

2020 ◽  
Vol 36 (5) ◽  
pp. 807-814
Author(s):  
Xiaolin Song ◽  
Xiaodong Gao ◽  
Paul Reese Weckler ◽  
Wei Zhang ◽  
Jie Yao ◽  
...  

HighlightsAn in-situ rainwater collection and infiltration (RWCI) method is a rainwater catchment utilization techniqueRWCI is advantageous for increasing sustainable plant-avaibale water to increase drought resistanceRWCI significantly increased the amount of water and nutrients in the rhizosphere for uptake by apple tree rootsABSTRACT. A two-year field experiment was undertaken to determine the spatial distribution of plant-available water and roots in soil profiles under two rainfall control systems—an in-situ rainwater collection and infiltration (RWCI) method and a semi-circular basin (SCB)—in apple orchards in the Loess Plateau of China. The results showed that the RWCI treatments with a soil depth of 40 cm (RWCI40), 60 cm (RWCI60), and 80 cm (RWCI80) significantly increased plant-available water in different seasons and depths and increased root growth of apple trees in the experimental soil profile (0–200 cm). At 0–200 cm soil depth, then RWCI treatments had significantly higher (91.86%-110.01%) mean plant-available water storage (PAWS) than the SCB treatment in both study years (2015 and 2016). From 0–120 cm soil depth, the RWCI60 treatment had significantly higher growing season mean PAWS than RWCI40 and RWCI80; however, RWCI80 had the highest from 120–200 cm. From 0–60 cm, the RWCI treatments had 25.84%-36.86% a smaller proportion of root system than the SCB treatment. However, from 60–120 cm, the proportion of root system increased by 131.53% (RWCI40), 157.95% (RWCI60) and 129.98% (RWCI80), relative to SCB. From 0–200 cm, the RWCI treatments had 1.49–1.94 times more root dry weight density than the SCB treatment. The highest concentration of fine roots occurred in the RWCI treatments. Thus, RWCI enabled roots to absorb more water and nutrients from a wider wetted area and improved drought resistance. Keywords: Drought resistance, Fine roots, Loess Plateau, Plant-available water, Spatial distribution.


2005 ◽  
Vol 29 (2) ◽  
pp. 266-273 ◽  
Author(s):  
ZHANG Li-Zhen ◽  
◽  
CAO Wei-Xing ◽  
ZHANG Si-Ping ◽  
ZHOU Zhi-Guo

HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 795-798 ◽  
Author(s):  
Dana L. Baumann ◽  
Beth Ann Workmaster ◽  
Kevin R. Kosola

Wisconsin cranberry growers report that fruit production by the cranberry cultivar `Ben Lear' (Vaccinium macrocarpon Ait.) is low in beds with poor drainage, while the cultivar `Stevens' is less sensitive to these conditions. We hypothesized that `Ben Lear' and `Stevens' would differ in their root growth and mortality response to variation in soil water potential. Rooted cuttings of each cultivar were grown in a green-house in sand-filled pots with three different soil water potentials which were regulated by a hanging water column below a fritted ceramic plate. A minirhizotron camera was used to record root growth and mortality weekly for five weeks. Root mortality was negligible (2% to 6%). Whole plant relative growth rates were greatest for both cultivars under the wettest conditions. Rooting depth was shallowest under the wettest conditions. Whole-plant relative growth rates of `Ben Lear' were higher than `Stevens' at all soil water potentials. `Stevens' plants had significantly higher root to shoot ratios and lower leaf area ratios than `Ben Lear' plants, and produced more total root length than `Ben Lear' at all soil water potentials. Shallow rooting, high leaf area ratio, and low allocation to root production by `Ben Lear' plants may lead to greater susceptibility to drought stress than `Stevens' plants in poorly drained cranberry beds.


1988 ◽  
Vol 18 (6) ◽  
pp. 728-732 ◽  
Author(s):  
G. L. Simmons ◽  
P. E. Pope

A root growth model was developed to graphically simulate predicted root responses of yellow-poplar and sweetgum seedlings to changes in soil physical properties. Data for the model were collected in greenhouse and laboratory experiments. Newly germinated yellow-poplar (Liriodendrontulipifera L.) and sweetgum (Liquidambarstyraciflua L.) seedlings were transplanted into pots containing silt loam soil compacted to bulk densities of 1.25, 1.40, or 1.55 Mg m−3 and grown under greenhouse conditions for 3 months. Minimum water potentials were maintained at −10 or −300 kPa. At harvest, root systems were excavated, divided into orders of lateral roots, and length, number, and branching frequency of each order were determined. Air-filled porosity and mechanical resistance were determined for soil samples equilibrated at the same bulk densities and water potentials as those used in the greenhouse study. Based on root and soil parameters, the model ROOTSIM graphically depicts the root distribution of each tree species at different levels of bulk density, mechanical resistance, and air-filled porosity. The model accurately predicts lateral root length and distribution for the range of soil properties used in the greenhouse study but has not been validated for these or other soil conditions.


1978 ◽  
Vol 58 (2) ◽  
pp. 275-278
Author(s):  
D. T. MORRIS ◽  
T. B. DAYNARD

Corn plants were grown in growth rooms at 1.2 and 1.4 g cm−3 soil bulk density. Leaf water potentials (LWP) of paired plants of similar leaf area were monitored during 3-day drying cycles. With denser soil, LWP declined more rapidly during light, and increased more slowly during dark intervals because of restricted root growth.


Sign in / Sign up

Export Citation Format

Share Document