Development of a root growth model for yellow-poplar and sweetgum seedlings grown in compacted soil

1988 ◽  
Vol 18 (6) ◽  
pp. 728-732 ◽  
Author(s):  
G. L. Simmons ◽  
P. E. Pope

A root growth model was developed to graphically simulate predicted root responses of yellow-poplar and sweetgum seedlings to changes in soil physical properties. Data for the model were collected in greenhouse and laboratory experiments. Newly germinated yellow-poplar (Liriodendrontulipifera L.) and sweetgum (Liquidambarstyraciflua L.) seedlings were transplanted into pots containing silt loam soil compacted to bulk densities of 1.25, 1.40, or 1.55 Mg m−3 and grown under greenhouse conditions for 3 months. Minimum water potentials were maintained at −10 or −300 kPa. At harvest, root systems were excavated, divided into orders of lateral roots, and length, number, and branching frequency of each order were determined. Air-filled porosity and mechanical resistance were determined for soil samples equilibrated at the same bulk densities and water potentials as those used in the greenhouse study. Based on root and soil parameters, the model ROOTSIM graphically depicts the root distribution of each tree species at different levels of bulk density, mechanical resistance, and air-filled porosity. The model accurately predicts lateral root length and distribution for the range of soil properties used in the greenhouse study but has not been validated for these or other soil conditions.

1988 ◽  
Vol 18 (11) ◽  
pp. 1392-1396 ◽  
Author(s):  
G. L. Simmons ◽  
P. E. Pope

A greenhouse study was conducted to determine the influence of soil water potential and endomycorrhizal fungi on root growth of yellow-poplar (Liriodendrontulipifera L.) and sweet gum (Liquidambarstyraciflua L.) seedlings grown at three soil bulk densities. Silt loam soil was compacted in PVC pots to bulk densities of 1.25 (low), 1.40 (medium), or 1.55 (high) Mg • m−3, and equilibrated at −10 kPa soil water potential. Newly germinated seedlings were transplanted into the pots, inoculated with fungal chlamydospores of Glomusmacrocarpum or Glomusfasciculaturn, or distilled water (control), and grown for 3 months at −10 or −300 kPa soil water potential. Total porosity, air-filled porosity, water content, and mechanical resistance of the soil were determined for samples compacted to the same bulk densities and equilibrated at the same soil water potentials as were used in the greenhouse study. Root growth was reduced by the high mechanical resistance caused by bulk densities of 1.40 and 1.55 Mg • m−3 at −300 kPa water potential. At both water potentials, total length of lateral roots and fibrosity of the root system of both tree species decreased significantly when bulk density increased from 1.40 to 1.55 Mg • m−3. Air-filled porosity less than 0.12 m3 • m−3 limited root growth when water potential was −10 kPa, and mechanical resistance greater than 3438 kPa restricted growth at −300 kPa. At −10 kPa, root length and fibrosity were greatest for inoculated sweet gum seedlings at each bulk density. At −300 kPa, sweet gum seedlings inoculated with G. fasciculatum had the greatest root length and fibrosity at the low and medium bulk densities. Mycorrhizal effects on root length of yellow-poplar were variable, and fibrosity was not significantly affected by mycorrhizal treatment.


1987 ◽  
Vol 17 (8) ◽  
pp. 970-975 ◽  
Author(s):  
G. L. Simmons ◽  
P. E. Pope

A greenhouse study was conducted to determine the influence of soil compaction on root growth of yellow poplar (Liriodendrontulipifera L.) and sweet gum (Liquidambarstyraciflua L.) seedlings grown in association with the mycorrhizal fungi Glomusmacrocarpum Tul. and Tul. or G. fasciculatum (Thaxt) Gerd. and Trappe. Seedlings were transplanted into pots that contained silt loam compacted to bulk densities of 1.25, 1.40, or 1.55 Mg m−3. Fungal chlamydospores or control filtrates were used to inoculate seedlings. Weight and length of yellow poplar roots were significantly greater at the lower bulk densities than at the highest bulk density, but fibrosity of the root system was unaffected by increasing bulk density. Weight, length, and fibrosity of the sweetgum root system decreased significantly with each increase in bulk density. Inoculated yellow poplar seedlings had greater root weight at each bulk density than noninoculated seedlings, but root length was not influenced by mycorrhizal treatments at higher bulk densities. Fibrosity of yellow poplar roots varied by mycorrhizal treatment at each bulk density. Results indicate that for yellow poplar, compaction effects may outweigh mycorrhizal benefits at higher bulk densities. At each bulk density, sweet gum seedlings inoculated with G. fasciculatum showed the greatest root growth, suggesting that effects of compaction can be alleviated for sweet gum by inoculation with this mycorrhizal fungus.


1990 ◽  
Vol 8 (4) ◽  
pp. 215-220 ◽  
Author(s):  
Edward F. Gilman

Abstract Root form is governed by seedling genetics and soil characteristics including texture, compaction, depth to the water table, fertility, moisture content and other factors. Trees develop lateral roots growing parallel to the surface of the soil. These are generally located in the top 30 cm (12 in) of soil. Fine roots emerge from lateral roots and grow into the soil close to the surface. If soil conditions permit, some trees grow tap and other vertically oriented roots capable of penetrating several feet into the soil. Many trees, particularly those planted in urban landscapes, do not generate tap roots. Lateral roots spread to well beyond the edge of the branches. Their growth in governed by competition from other plants, available water, soil temperature, fertility, stage of shoot growth and other factors.


1976 ◽  
Vol 86 (3) ◽  
pp. 567-571 ◽  
Author(s):  
P. T. Gooderham

Untimely ploughing and rotavation of a silt loam soil was found to increase bulk density, and mechanical resistance to a needle penetrometer probe, and to reduce air porosity. These effects were not found deeper than 8 cm, although measurements with a 13 mm field penetrometer probe indicated some increase in mechanical resistance down to 30 cm. The effect of untimely cultivations on soil conditions was small when compared with the effect of loosening by hand digging. This treatment reduced substantially the bulk density and mechanical resistance; it increased air porosity and moisture content of the subsoil. Although measurements of mechanical resistance with the laboratory penetrometer were 2·4 times those of the field penetrometer, there was nevertheless good correlation between measurements.


2005 ◽  
Vol 33 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Adriana Sánchez-Urdaneta ◽  
Cecilia Peña-Valdivia ◽  
Carlos Trejo ◽  
J. Aguirre R. ◽  
Elizabeth Cárdenas S.

1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


2007 ◽  
Vol 33 (1) ◽  
pp. 43-47
Author(s):  
Patrick Weicherding ◽  
Chad Giblin ◽  
Jeffrey Gillman ◽  
David Hanson ◽  
Gary Johnson

Pot-bound Tilia cordata Mill. and Salix alba L. ‘Niobe’ were planted in a Waukegan silt loam soil in June 2003 at the University of Minnesota TRE nursery in St. Paul, Minnesota. Before planting, the root balls of the container-grown plants were mechanically disrupted using one of three standard root pruning practices recommended to correct circling roots: scoring (slicing), butterfly pruning, or teasing. Root balls on the controls were left undisturbed. The trees were harvested in October 2004. Roots growing beyond the original root ball were counted and measured for diameter growth to assess the effectiveness of the root pruning techniques in encouraging root growth outside of the original root ball. All root disruption treatments resulted in increased fibrous root growth, but no mechanical root disruption method was significantly better than root balls left undisturbed.


Author(s):  
Y. A. Unguwanrimi ◽  
A. M. Sada ◽  
G. N. Ugama ◽  
H. S. Garuba ◽  
A. Ugoani

Draft requirements of two animal – drawn (IAR) weeders operating on loam soil were determined in the study. The implements include a straddle row weeder and an emcot attached rotary weeder evaluated under the same soil conditions, using a pair of white Fulani breed of oxen. The animal draft requirement was first estimated from the animal ergonomics measurements. Using area of 0.054 hectare as experimental plot for each implement the draft requirement of each implement was investigated after taking soil samples for soil moisture content and bulk density determinations. The implements tested showed variation in their average draft requirement. The straddle row weeder had the highest value of 338.15 N respectively while the emcot attached rotary weeder had the lowest value of 188.12 N with 47.03%, respectively. The average soil moisture contents and bulk density were 13.0% and 1.46%/cm3, respectively.


1949 ◽  
Vol 41 (10) ◽  
pp. 451-458 ◽  
Author(s):  
P. S. Lamba ◽  
H. L. Ahlgren ◽  
R. J. Muckenhirn

Sign in / Sign up

Export Citation Format

Share Document