Interactive visualization of electron density slices

2005 ◽  
Vol 38 (3) ◽  
pp. 563-565 ◽  
Author(s):  
Filipe R. N. C. Maia ◽  
Abraham Szöke ◽  
Warren DeLano ◽  
David van der Spoel

A new tool has been developed to aid in the visualization of electron density in crystals or from quantum chemistry calculations. It displays the fine details of the electron density on a plane and the three-dimensional model of the molecule at the same time. The program enables the user to examine the details of weak or irregular features. Such features frequently occur in low-resolution maps, where they determine the correct tracing of a protein backbone. In high-resolution maps, solvent regions are difficult or impossible to observe using isosurfaces. The tool has been integrated into an existing molecular visualization package (PyMol) making it possible to observe and interact both with a structure model and the electron density slices freely, simultaneously and independently. This visualization model fills a gap in the visualization methods available to crystallographers and others who work with electron density maps.

2012 ◽  
Vol 4 (10) ◽  
pp. 1198-1206 ◽  
Author(s):  
Hiroshi Kamioka ◽  
Yoshitaka Kameo ◽  
Yuichi Imai ◽  
Astrid D. Bakker ◽  
Rommel G. Bacabac ◽  
...  

2020 ◽  
Vol 61 (2) ◽  
pp. 1-9
Author(s):  
Ha Viet Nhu ◽  

In this study, the approaches and research methods have been proposed based on the analysis of challenges in modeling, establishing a three-dimensional model of geological engineering conditions of the Hanoi area. The three-dimensional model of the Hanoi area was composed of 21 geological engineering units as a stacked structure, with accuracy and reliability were verified by statistical evaluation. Based on the integration of engineering geological attributes, the model has contributed for reconstruction of the geospatial engineering geological structure of the study area as comprehensive, continuously, and high resolution.


2015 ◽  
Vol 713-715 ◽  
pp. 323-326
Author(s):  
Sha Sha Wang ◽  
Zheng Ning Tang ◽  
Bin Ying Miao ◽  
Jia Xiang Chen

EHD micro-jet can deposit rule and functional patterns in a direct, continuous and controllable manner, and has the advantages of good compatibility, high resolution and simple structure, thus becoming a cost-effective and high-efficiency technology. Through numerical method, obtain the three dimensional model of cone-jet and emphasize the correlation of sediment diameter and PEO concentration. The theoretical graphics agree well with the experimental data, which can explain and provide some theoretical basis for the experiments.


2001 ◽  
Vol 106 (E3) ◽  
pp. 5099-5105 ◽  
Author(s):  
James Y-K. Cho ◽  
Manuel de la Torre Juárez ◽  
Andrew P. Ingersoll ◽  
David G. Dritschel

2021 ◽  
Vol 11 (14) ◽  
pp. 6482
Author(s):  
Daniele Giordan ◽  
Danilo Godone ◽  
Marco Baldo ◽  
Marco Piras ◽  
Nives Grasso ◽  
...  

A three-dimensional survey of natural caves is often a difficult task due to the roughness of the investigated area and the problems of accessibility. Traditional adopted techniques allow a simplified acquisition of the topography of caves characterized by an oversimplification of the geometry. Nowadays, the advent of LiDAR and Structure from Motion applications eased three-dimensional surveys in different environments. In this paper, we present a comparison between other three-dimensional survey systems, namely a Terrestrial Laser Scanner, a SLAM-based portable instrument, and a commercial photo camera, to test their possible deployment in natural caves survey. We presented a comparative test carried out in a tunnel stretch to calibrate the instrumentation on a benchmark site. The choice of the site is motivated by its regular geometry and easy accessibility. According to the result obtained in the calibration site, we presented a methodology, based on the Structure from Motion approach that resulted in the best compromise among accuracy, feasibility, and cost-effectiveness, that could be adopted for the three-dimensional survey of complex natural caves using a sequence of images and the structure from motion algorithm. The methods consider two different approaches to obtain a low resolution complete three-dimensional model of the cave and ultra-detailed models of most peculiar cave morphological elements. The proposed system was tested in the Gazzano Cave (Piemonte region, Northwestern Italy). The obtained result is a three-dimensional model of the cave at low resolution due to the site’s extension and the remarkable amount of data. Additionally, a peculiar speleothem, i.e., a stalagmite, in the cave was surveyed at high resolution to test the proposed high-resolution approach on a single object. The benchmark and the cave trials allowed a better definition of the instrumentation choice for underground surveys regarding accuracy and feasibility.


Sign in / Sign up

Export Citation Format

Share Document