scholarly journals Survey Solutions for 3D Acquisition and Representation of Artificial and Natural Caves

2021 ◽  
Vol 11 (14) ◽  
pp. 6482
Author(s):  
Daniele Giordan ◽  
Danilo Godone ◽  
Marco Baldo ◽  
Marco Piras ◽  
Nives Grasso ◽  
...  

A three-dimensional survey of natural caves is often a difficult task due to the roughness of the investigated area and the problems of accessibility. Traditional adopted techniques allow a simplified acquisition of the topography of caves characterized by an oversimplification of the geometry. Nowadays, the advent of LiDAR and Structure from Motion applications eased three-dimensional surveys in different environments. In this paper, we present a comparison between other three-dimensional survey systems, namely a Terrestrial Laser Scanner, a SLAM-based portable instrument, and a commercial photo camera, to test their possible deployment in natural caves survey. We presented a comparative test carried out in a tunnel stretch to calibrate the instrumentation on a benchmark site. The choice of the site is motivated by its regular geometry and easy accessibility. According to the result obtained in the calibration site, we presented a methodology, based on the Structure from Motion approach that resulted in the best compromise among accuracy, feasibility, and cost-effectiveness, that could be adopted for the three-dimensional survey of complex natural caves using a sequence of images and the structure from motion algorithm. The methods consider two different approaches to obtain a low resolution complete three-dimensional model of the cave and ultra-detailed models of most peculiar cave morphological elements. The proposed system was tested in the Gazzano Cave (Piemonte region, Northwestern Italy). The obtained result is a three-dimensional model of the cave at low resolution due to the site’s extension and the remarkable amount of data. Additionally, a peculiar speleothem, i.e., a stalagmite, in the cave was surveyed at high resolution to test the proposed high-resolution approach on a single object. The benchmark and the cave trials allowed a better definition of the instrumentation choice for underground surveys regarding accuracy and feasibility.

2012 ◽  
Vol 4 (10) ◽  
pp. 1198-1206 ◽  
Author(s):  
Hiroshi Kamioka ◽  
Yoshitaka Kameo ◽  
Yuichi Imai ◽  
Astrid D. Bakker ◽  
Rommel G. Bacabac ◽  
...  

2005 ◽  
Vol 38 (3) ◽  
pp. 563-565 ◽  
Author(s):  
Filipe R. N. C. Maia ◽  
Abraham Szöke ◽  
Warren DeLano ◽  
David van der Spoel

A new tool has been developed to aid in the visualization of electron density in crystals or from quantum chemistry calculations. It displays the fine details of the electron density on a plane and the three-dimensional model of the molecule at the same time. The program enables the user to examine the details of weak or irregular features. Such features frequently occur in low-resolution maps, where they determine the correct tracing of a protein backbone. In high-resolution maps, solvent regions are difficult or impossible to observe using isosurfaces. The tool has been integrated into an existing molecular visualization package (PyMol) making it possible to observe and interact both with a structure model and the electron density slices freely, simultaneously and independently. This visualization model fills a gap in the visualization methods available to crystallographers and others who work with electron density maps.


Author(s):  
S. D’Amelio ◽  
V. Maggio ◽  
B. Villa

The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.


2015 ◽  
Vol 752-753 ◽  
pp. 1301-1306 ◽  
Author(s):  
Xing Xing Wang ◽  
Jin Dong Wei ◽  
Yi Pei ◽  
Yu Zhu ◽  
Hong Jun Ni

Reverse Engineering (RE) and Rapid Prototyping (RP) were used for manufacturing cream bottle. Points cloud data of cream bottle was accessed by handheld laser scanner firstly. Then, points cloud data was handed by Imageware software and the three-dimensional model was formed by Solidworks software. Finally, the entity model was manufacturing by RP machine. In the research, rapid prototyping was combined with reverse engineering technology, manufacturing cycle was shorten, production requirements, improve efficiency and other advantages were met.


2018 ◽  
Vol 63 ◽  
pp. 00010
Author(s):  
Izabela Piech ◽  
Boguslawa Kwoczynska ◽  
Artur Ciszewski

The aim of the study was to recreate, in the form of a 3D model, the Citadel fort No. 33 “Krakus” in Krakow. The data on the basis of which the three-dimensional model was made were obtained using a Leica ScanStation P40 terrestrial laser scanner, which is owned by the Faculty of Environmental Engineering and Geodesy of the University of Agriculture Hugona Kollataj in Krakow. The scope of field work included performing laser measurements, and then processing the point cloud in the Leica Cyclone 3D program and creating a full architectural model in SketchUp 2016.


Author(s):  
P. E. Collado-Espejo ◽  
J. García-León ◽  
F. J. Jiménez-González ◽  
C. M. Sánchez-Yepes

Abstract. The former Church of St. Mary, known as the Old Cathedral, in Cartagena (Region of Murcia, Spain), is a construction from the beginning of the 13th century, but it was transformed in the 16th century and rebuilt at the beginning of the 20th century. The bombings occurring during the Spanish Civil War caused the partial collapse of the building and the state of ruin that it currently presents. It is protected as a PCI with the category of monument. A Master Plan is currently being developed that should lead to the recovery of the building. The "Thermal Analysis and Geomatics (TAG)" Research Group of the Polytechnic University of Cartagena has collaborated in the drafting of the Master Plan with a planimetric survey and graphic analysis of the entire building. For this purpose, digital terrestrial photogrammetry techniques and a 3D laser scanner compatible with classical topography have been used, in order to obtain an accurate three-dimensional model. All this graphic information has been contrasted with the historical, typological, material and constructive information currently available about the building, which has facilitated the making of an exhaustive three-dimensional analysis that permits us to know this ancient Cathedral in depth. This paper will describe the work methodology followed, the technical means used and the results achieved, which have been incorporated into the Master Plan that is being prepared. Undoubtedly, the digital analysis has helped to obtain a better general understanding of the building and to be able to propose a correct formal, structural and material recomposition.


2015 ◽  
pp. 125-130
Author(s):  
Sergei I Trubachev ◽  
Olga N Аlekseychuk

The stress-strain state of thick-walled cylindrical perforated shell under internal pressure is consider. Defined the reduced stiffness of the shell by defining an equivalent thickness. A numerical calculation using solid (3D) and shell finite elements is done. Analyzed stress-straine state of circle perforating holes and the thickness of the wall. Compared the stress-straine state obtained on solid three-dimensional model with the results for a shell with equvivalent stiffness. Were given advice on the definition of strass-straine state by using the eqvivalent stiffness considering stress concentration.


2020 ◽  
Vol 61 (2) ◽  
pp. 1-9
Author(s):  
Ha Viet Nhu ◽  

In this study, the approaches and research methods have been proposed based on the analysis of challenges in modeling, establishing a three-dimensional model of geological engineering conditions of the Hanoi area. The three-dimensional model of the Hanoi area was composed of 21 geological engineering units as a stacked structure, with accuracy and reliability were verified by statistical evaluation. Based on the integration of engineering geological attributes, the model has contributed for reconstruction of the geospatial engineering geological structure of the study area as comprehensive, continuously, and high resolution.


Author(s):  
Feifei Feng ◽  
Jinfa Shi ◽  
Jie Yang ◽  
Junxu Ma

The three-dimensional model rotor of vertical shaft impact crusher was established by using the three-dimensional software Solidworks and it was imported into the discrete element software EDEM for dynamic simulation. The force of the split cone, the motion trajectory and force of the particles were analyzed in rotor by using the post-processing function of EDEM. The results show that the split cone was mainly affected by the normal action of particles. According to the definition of impact wear, it was finally determined that the wear form of the split cone is impact wear.


Sign in / Sign up

Export Citation Format

Share Document