Determination of fluctuations in local symmetry and measurement by convergent beam electron diffraction: applications to a relaxor-based ferroelectric crystal after thermal annealing

2013 ◽  
Vol 46 (5) ◽  
pp. 1331-1337 ◽  
Author(s):  
Kyou-Hyun Kim ◽  
David A. Payne ◽  
Jian Min Zuo

Single crystals of Pb(Mg1/3Nb2/3)O3–31%PbTiO3(PMN–31%PT) are known for their complex domain structures at the nanometre scale. While their average symmetry has been studied by X-ray, neutron and electron diffraction methods, there is little knowledge about variations in symmetry at the local scale. Here, direct evidence is provided for the volume dependence and spatial dependence of symmetry fluctuations by using quantitative convergent beam electron diffraction and energy dispersive X-ray spectroscopy. Fluctuations in symmetry were determined by using different electron beam probe sizes ranging from ∼2 to 25 nm from a crystal ∼62 nm thick. The symmetry of PMN–31%PT was found to increase linearly as the average volume increased, and the local symmetry fluctuated from one location to another at the nanoscale. Energy dispersive X-ray spectroscopy indicates that chemical fluctuations are significant when the probe size decreases to ∼2 nm. The symmetry fluctuation is attributed to locally varying composition-dependent ionic displacements and spontaneous polarization.

1980 ◽  
Vol 35 (9) ◽  
pp. 973-984 ◽  
Author(s):  
R. Voss ◽  
G. Lehmpfuhl ◽  
P. J. Smith

Abstract Low index structure potentials of silicon were determined by convergent beam electron diffraction (Kossel-Möllenstedt technique) from very small crystal areas of about 100 Å in diameter. The values of 111, 222, 220, 113 and 004, determined to an accuracy of ±0.03 volts, are in excellent agreement with the accurate X-ray results of Aldred and Hart (see [6], p. 239). Heavy arsenic or phosphorous doping was found to cause a shift of 0.15 volts in the 111 structure potential. Absorption potentials were also determined and found to be 1/3 of the theoretical values published by Radi [20].


Author(s):  
Dang-Rong Liu ◽  
D. B. Williams

It is interesting to note that for the diamond type structure of Si, Ge and diamond, the forbidden {200} reflections in the exact <100> orientation diffraction pattern cannot be seen. In contrast, we also note a standing controversy over the structure of the MgAl2O4, spinel. Its structure was determined long ago by x-ray powder method as Fd3m (the diamond type). However, its electron diffraction pattern taken in the <100> orientation shows weak {200} reflections, which are taken as evidence that the spinel should have the space group F43m (the blende type), rather than Fd3m. Others speculate that these {200} reflections result from the high order Laue zone (HOLZ) reflections, and the spinel should be Fd3m. Nevertheless, still others think that these analyses are not conclusive. We have carefully studied the space group of TiBe2 using the convergent beam electron diffraction technique, and unambiguously demonstrated that its space group must be Fd3m.


Author(s):  
Yimei Zhu ◽  
Hong Zhang ◽  
A.R. Moodenbaugh ◽  
M. Suenaga

Abundant dislocations and dislocations associated with stacking faults were observed and characterized in YBa2Cu3O7−δ (δ= 0.77). The crystallographic orientation of the dislocation and the fault were analyzed using Kikuchi patterns matched with computer generated Kikuchi maps. The Burgers vector of the dislocation and the displacement vector of the fault were determined by using the g·b = 0 and g · R=0 criteria.Bulk samples of YBa2Cu3O7 were produced by standard pressing and sintering up to 970 °C. Samples were heated in air, then quenched into liquid nitrogen to reduce oxygen content. Subsequent anneal at 200 ° C took place with samples sealed in silica with 1/2 atm. of argon. TEM specimens were thinned by ion mill and examined in a JEOL 2000FX electron microscope operating at 200kv.X-ray powder diffraction and convergent beam electron diffraction with 200 Å spot size show that YBa2Cu3O6.23 has a tetragonal structure.


Author(s):  
S. Swaminathan ◽  
S. Altynov ◽  
I. P. Jones ◽  
N. J. Zaluzec ◽  
D. M. Maher ◽  
...  

The advantages of quantitative Convergent Beam Electron Diffraction (CBED) method for x-ray structure factor determination have been reviewed by Spence. The CBED method requires accurate values of Debye-Waller (D-W) factors for the estimation of the coefficients of crystal potential of the higher order beams, Vg, the calculation of the absorption potential, V′g using the Einstein model for phonons, and finally the conversion of the fitted values of the coefficients of crystal potential, V″, to x-ray structure factors. Debye-Waller factors are conventionally determined by neutron or x-ray diffraction methods. Because of the difficulties in conducting high temperature neutron and x-ray diffraction experiments, D-W factors are rarely measured at temperatures above room temperature. Debye-Waller factors at high temperatures can be determined by Convergent Beam Electron diffraction (CBED) method using Transmission Electron Microscopy (TEM) employed with a hot stage attachment. Recently Holmestad et al. have attempted to measure the D-W factors by matching the energy-filtered Higher Order Laue Zone (HOLZ) line intensities near liquid nitrogen temperature.


Author(s):  
T. Kaneyama ◽  
T. Tomita ◽  
Y. Ishida ◽  
M. Kersker

Many electron microscopes equipped with a field-emission gun (FE-TEMs) are now used for the purpose of improving the spatial and the energy resolution in energy dispersive x-ray spectroscopy and electron energy loss spectroscopy. For the convergent-beam electron diffraction techniques, FE-TEMs have greater advantages than conventional electron microscopes with a thermal LaB cathode. We discussed these advantages using JEM2010F and JEM2010, which have equivalent specifications except for the electron source and the condenser lens system.High spatial resolutionThe brightness of an FE-gun (∽ 5 × 108A cm-2 sr-1) is about 100 times that a conventional LaB6 cathode. The gun can obtain enough current for taking CBED patterns in an exposure time of a few seconds even with an electron probe less than 1 nm in diameter (FIG. 1). Steep wedge shapes and rapid bends within the illuminated area deteriorate the accuracy of quantitative CBED analysis. Improvement of the spatial resolution by a small probe reduces these inevitable averaging effects.


Author(s):  
R. Vincent ◽  
D. J. Exelby

In recent years, significant progress has been made towards a solution for the general problem of crystal structure determination by convergent beam electron diffraction (CBED). Even if we consider only perfectly ordered, periodic crystals defined by one of the conventional space groups, diffraction methods based on a focussed sub-micron beam of electrons are applicable to several related sets of structural problems that are not accessible to conventional X-ray or neutron diffraction techniques. We assume here that the space group either is known or has been determined from CBED patterns and that phases and amplitudes for some subset of the structure factors are required. Two limiting cases have been explored in some detail. For crystals where the atomic parameters and Debye-Waller factors are known accurately from high quality X-ray data, information on the charge redistribution for bonding electrons is available from precise measurements of the low order structure factors. Following the original research of Kambe, some recent work has demonstrated that accurate structure amplitudes and three-beam phase invariants can be extracted from the dynamical intensity distribution in CBED reflections. In principle, this approach is completely general but considerable labour would be required to extract sufficient data to solve the structure of an unknown crystal, whereas a large set of kinematic intensities is acquired from a single X-ray pattern.


1986 ◽  
Vol 69 ◽  
Author(s):  
M. E. Twigg ◽  
S. N. G. Chu ◽  
D. C. Joy ◽  
D. M. Maher ◽  
A. T. Macrander ◽  
...  

AbstractWith X-ray diffraction techniques, it is possible to routinely measure lattice parameters to several parts in 104 for macroscopic specimens. However, measurements of lattice parameter changes for quaternary (InGaAsP) device structures several microns in width are not usually feasible with X-ray diffraction techniques. Convergent Beam Electron Diffraction (CBED), which is one of the techniques available on a modern transmission electron microscope (TEM), may be sensitive to these small, localized lattice parameter changes. Unfortunately, dynamical diffraction effects prevent direct extraction of changes in the lattice parameter from CBED patterns which are obtained from high atomic number materials. For this reason, we have chosen to calibrate the relative position of CBED features with X-ray lattice parameter measurements which were obtained from planar quaternary layers grown on InP substrates. For the active quaternary region of an electro-optical device structure, it is shown that this approach may be sensitive to a relative change in the lattice parameter as small as ±2 parts in 104, which is the uncertainty in the X-ray calibration measurements.


Sign in / Sign up

Export Citation Format

Share Document