X-ray diffraction investigations of CaF2 at high pressure

1992 ◽  
Vol 25 (5) ◽  
pp. 578-581 ◽  
Author(s):  
L. Gerward ◽  
J. S. Olsen ◽  
S. Steenstrup ◽  
M. Malinowski ◽  
S. Åsbrink ◽  
...  

Synchrotron-radiation X-ray diffraction studies of CaF2 at high pressures have been performed on a powder sample up to 45 GPa and on a single-crystal sample up to 9.4 GPa. The bulk modulus of the low-pressure phase was determined to be B 0 = 87 (5) GPa. A phase transition was observed at about 9.5 GPa. The transition is accompanied by a volume contraction of 11%. The high-pressure phase is orthorhombic PbCl2 type (space group Pbnm). The sample only partially reverts to the low-pressure phase upon release of pressure.

1997 ◽  
Vol 53 (1) ◽  
pp. 25-31 ◽  
Author(s):  
H. Sowa

High-pressure X-ray diffraction measurements on NaSbF6 powder were performed up to 5.63 (7) GPa. At ∼0.1 GPa the cubic low-pressure phase with ordered ReO3-type crystal structure undergoes a phase transition into a rhombohedral LiSbF6-type modification. The high-pressure behaviour of this phase is characterized by rotations and distortions of the coordination octahedra, but it also can be described with a sphere-packing deformation. The octahedral distortions are probably caused by cation–cation repulsions.


Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


2019 ◽  
Vol 36 (4) ◽  
pp. 046103 ◽  
Author(s):  
Sheng Jiang ◽  
Jing Liu ◽  
Xiao-Dong Li ◽  
Yan-Chun Li ◽  
Shang-Ming He ◽  
...  

2017 ◽  
Vol 102 (3) ◽  
pp. 666-673 ◽  
Author(s):  
Anna Pakhomova ◽  
Leyla Ismailova ◽  
Elena Bykova ◽  
Maxim Bykov ◽  
Tiziana Boffa Ballaran ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 99 ◽  
Author(s):  
Ruilian Tang ◽  
Jiuhua Chen ◽  
Qiaoshi Zeng ◽  
Yan Li ◽  
Xue Liang ◽  
...  

Goethite is a major iron-bearing sedimentary mineral on Earth. In this study, we conducted in situ high-pressure x-ray diffraction, Raman, and electrical impedance spectroscopy measurements of goethite using a diamond anvil cell (DAC) at room temperature and high pressures up to 32 GPa. We observed feature changes in both the Raman spectra and electrical resistance at about 5 and 11 GPa. However, the x-ray diffraction patterns show no structural phase transition in the entire pressure range of the study. The derived pressure-volume (P-V) data show a smooth compression curve with no clear evidence of any second-order phase transition. Fitting the volumetric data to the second-order Birch–Murnaghan equation of state yields V0 = 138.9 ± 0.5 Å3 and K0 = 126 ± 5 GPa.


1989 ◽  
Vol 22 (1) ◽  
pp. 61-63 ◽  
Author(s):  
J. S. Olsen ◽  
L. Gerward ◽  
U. Benedict ◽  
H. Luo ◽  
O. Vogt

High-pressure X-ray diffraction studies have been performed on ThP using synchrotron radiation and a diamond-anvil cell. The bulk modulus B 0 and its pressure derivative B′0 have been determined (B 0 = 137 GPa; B′0 = 5.1). A phase transition from the NaCl structure to the CsCl structure was observed at about 30 GPa.


RSC Advances ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 4904-4911 ◽  
Author(s):  
Xudong Zhou ◽  
Jian Zhang ◽  
Yanmei Ma ◽  
Hui Tian ◽  
Yue Wang ◽  
...  

The compression behaviors of γ-AlOOH nanoflakes were investigated via in situ high pressure synchrotron radiation angle dispersive X-ray diffraction techniques.


2004 ◽  
Vol 129 (12) ◽  
pp. 791-796 ◽  
Author(s):  
Pallavi Teredesai ◽  
D.V.S. Muthu ◽  
N. Chandrabhas ◽  
S. Meenakshi ◽  
V. Vijayakumar ◽  
...  

2004 ◽  
Vol 60 (1) ◽  
pp. 1-9 ◽  
Author(s):  
R. J. Angel ◽  
U. Bismayer ◽  
W. G. Marshall

Pure lead phosphate, Pb3(PO4)2, undergoes a phase transition from C2/c to R\bar 3m symmetry at a pressure of approximately 1.8 GPa and room temperature. Single-crystal X-ray diffraction measurements of the unit-cell parameters of a sample doped with 1.6% Ba2+ for the Pb2+ indicates that the doping reduces the transition pressure by approximately 0.1 GPa. The structural evolution of both samples through the phase transition has been determined by Rietveld refinement of neutron powder diffraction data collected to pressures of 6.3 and 3.3 GPa, respectively. There is no evidence for any significant change in the local structure at the phase transition at high pressures; the structure of the R\bar 3m phase at pressures just above the phase transition includes disordered positions for several atoms. The observation of diffuse scattering from the R\bar 3m phase at high pressure by single-crystal X-ray diffraction suggests that the disorder is static and arises from the presence of several orientations of the ordered microdomains of the monoclinic local structure. The macroscopic transition from monoclinic to trigonal symmetry therefore appears to correspond to the pressure at which the coherency strains between the locally monoclinic microdomains are sufficient to create a dimensionally trigonal lattice within which local displacements of atoms are still significant. A further pressure increase then decreases the magnitude of these displacements until at 3.5 GPa or higher they are not detectable by our current experimental probes, and the structure appears to have true local and global trigonal symmetry.


Pramana ◽  
1986 ◽  
Vol 27 (6) ◽  
pp. 835-839 ◽  
Author(s):  
Hema Sankaran ◽  
Surinder M Sharma ◽  
S K Sikka ◽  
R Chidambaram

Sign in / Sign up

Export Citation Format

Share Document