Structural characterization of free-standing gallium arsenide coiled membranes produced by micromachining

1999 ◽  
Vol 32 (1) ◽  
pp. 60-64
Author(s):  
Krishan Lal ◽  
S. Niranjana N. Goswami ◽  
J. Miao ◽  
H. L. Hartnagel

High-resolution X-ray diffraction techniques have been employed successfully to evaluate crystalline quality and long-term stability of coiled membranes. The process of fabrication involves photolithography, implantation by 2 MeV N^{2+} ions inn-type GaAs substrates, followed by selective etching. A five-crystal X-ray diffractometer was employed in (+, −, +) setting with an Mo Kα1exploring beam for high-resolution X-ray diffractometry and topography experiments. The exploring-beam width was reduced to illuminate different segments of the coiled membrane. Diffraction curves recorded from the bulk crystal surrounding the sensor had a half width of 26 arcseconds, whereas the half widths from sensor segments were in the range ∼58 to ∼166 arcseconds. Different segments (particularly vertical ones) were identified from the observed angular separations between different diffraction peaks as well as from the shape of the diffraction peaks. It was found that different segments of the sensor were tilted with respect to one another and the tilt angles were in the range 15–212 arcseconds. High-resolution X-ray diffraction topographs recorded from (5\bar 11) and (400) diffracting planes revealed that the sides of the trough below the membrane created by etching are not vertical, but tapered. Also, there is a thin strip of crystal freely hanging over the tapered regions as a result of underetching. The surface of the cavity is uneven. The structural perfection of different membrane segments could also be ascertained from the contrast in topographs.

1983 ◽  
Vol 26 ◽  
Author(s):  
Christine A. Langton ◽  
Della M. Roy

ABSTRACTDurability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques.


2015 ◽  
Vol 48 (2) ◽  
pp. 528-532 ◽  
Author(s):  
Peter Zaumseil

The occurrence of the basis-forbidden Si 200 and Si 222 reflections in specular X-ray diffraction ω–2Θ scans is investigated in detail as a function of the in-plane sample orientation Φ. This is done for two different diffractometer types with low and high angular divergence perpendicular to the diffraction plane. It is shown that the reflections appear for well defined conditions as a result of multiple diffraction, and not only do the obtained peaks vary in intensity but additional features like shoulders or even subpeaks may occur within a 2Θ range of about ±2.5°. This has important consequences for the detection and verification of layer peaks in the corresponding angular range.


1997 ◽  
pp. 439-448 ◽  
Author(s):  
A. Sanz-Hervás ◽  
C. Villar ◽  
M. Aguilar ◽  
A. Sacedón ◽  
J. L. Sánchez-Rojas ◽  
...  

NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950138 ◽  
Author(s):  
Sai Zhang ◽  
Shijun Yue ◽  
Jiajia Li ◽  
Jianbin Zheng ◽  
Guojie Gao

Au nanoparticles anchored on core–shell [Formula: see text]-Fe2O3@SnO2 nanospindles were successfully constructed through hydrothermal synthesis process and used for fabricating a novel nonenzymatic dopamine (DA) sensor. The structure and morphology of the Au/[Formula: see text]-Fe2O3@SnO2 trilaminar nanohybrid film were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the sensor were investigated by cyclic voltammetry and amperometry. The experimental results suggest that the composites have excellent catalytic property toward DA with a wide linear range from 0.5[Formula: see text][Formula: see text]M to 0.47[Formula: see text]mM, a low detection limit of 0.17[Formula: see text][Formula: see text]M (S/[Formula: see text]) and high sensitivity of 397.1[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text]. In addition, the sensor exhibits long-term stability, good reproducibility and anti-interference.


2011 ◽  
Vol 10 (4) ◽  
pp. 827-831 ◽  
Author(s):  
Jiunn-Chyi Lee ◽  
Ya-Fen Wu ◽  
Tzer-En Nee ◽  
Jen-Cheng Wang

Sign in / Sign up

Export Citation Format

Share Document