A solid-state oxidation of 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfinate to 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfonate

Author(s):  
Åsmund Kaupang ◽  
Carl Henrik Görbitz ◽  
Tore Bonge-Hansen

The organic acid–base complex 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfonate, C5H14N3+·C7H7O3S−, was obtained from the corresponding 1,1,3,3-tetramethylguanidinium 4-methylbenzenesulfinate complex, C5H14N3+·C7H7O2S−, by solid-state oxidation in air. Comparison of the two crystal structures reveals similar packing arrangements in the monoclinic space groupP21/c, with centrosymmetric 2:2 tetramers being connected by four strong N—H...O=S hydrogen bonds between the imine N atoms of two 1,1,3,3-tetramethylguanidinium bases and the O atoms of two acid molecules.

1999 ◽  
Vol 54 (5) ◽  
pp. 643-648 ◽  
Author(s):  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

The compounds (2-pyridone)2H+(MeSO2)2N- (1, monoclinic, space group P21/n ) and (6- methyl-2-pyridone)2H+(MeSO2)2N- (2, triclinic, P1) crystallize selectively and in good yields when the parent 2-pyridones (2-hydroxypyridines) are treated with the strong NH acid dimesylamine in acetonitrile or acetone. The corresponding 2-hydroxypyridinium salts could not be obtained. In the unprecedented crystal structures of 1 and 2, two pyridone units are linked by a proton to form very short and approximately symmetric O⋯H+ ⋯O hydrogen bonds, the adjacent C-O distances being appreciably elongated as compared to “free” pyridones [1: O ⋯ O 241.8(2), C -O 127.8(3) and 129.1(2) pm; 2: O ⋯ O 243.8(2), C -O 128.1(2) and 129.2(2) pm]. In both crystal packings, the homoconjugate cations and the dimesylamide anions are alternately associated into chains by an N - H ⋯ N “ and an N - H ⋯ O hydrogen bond.


1989 ◽  
Vol 44 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Jutta Hartmann ◽  
Shi-Qi Dou ◽  
Alarich Weiss

Abstract The 79Br and 127I NQR spectra were investigated for 1,2-diammoniumethane dibromide, -diiodide, 1,3-diammoniumpropane dibromide, -diiodide, piperazinium dibromide monohydrate, and piperazinium monoiodide in the temperature range 77 ≦ T/K ≦ 420. Phase transitions could be observed for the three iodides. The temperatures for the phase transitions are: 400 K and 404 K for 1,2-diammoniumethane diiodide, 366 K for 1,3-diammoniumpropane diiodide, and 196 K for piperazinium monoiodide.The crystal structures were determined for the piperazinium compounds. Piperazinium dibromide monohydrate crystallizes monoclinic, space group C2/c, with a= 1148.7 pm, 0 = 590.5 pm, c= 1501.6pm, β = 118.18°, and Z = 4. For piperazinium monoiodide the orthorhombic space group Pmn 21 was found with a = 958.1 pm, b = 776.9 pm, c = 989.3 pm, Z = 4. Hydrogen bonds N - H ... X with X = Br, I were compared with literature data.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


2005 ◽  
Vol 60 (2) ◽  
pp. 164-168 ◽  
Author(s):  
A. Elmali ◽  
Y. Elerman ◽  
G. Eren ◽  
F. Gümüş ◽  
I. Svoboda

2-(3’-Hydroxypropyl)benzimidazolium (Hhpb) hexa- and tetrachloroplatinate (C10H13N2O)2·[PtCl6] 1 and (C10H13N2O)2·[PtCl4] 2 were synthesized and their crystal structures determined. Compound 1 is monoclinic, space group P21/n, a = 8.800(1), b = 14.389(2), c = 10.264(2) Å, β = 98.540(10)°, V = 1285.3(3) Å3, Z = 2 and Dc = 1.959 g cm−3. Compound 2 is triclinic, space group P1̄, a=7.8480(10), b=9.0460(10), c=9.6980(10) Å ,α =65.420(10), β =68.810(10), γ = 76.770(1)°,V =581.26(4) Å3, Z =1 and Dc =1.969 g cm−3. In both compounds, the Pt atoms reside at a centre of inversion. Compounds 1 and 2 are comprised of 2-(3’-hydroxypropyl)benzimidazolium (Hhpb)+: (C10H12N2O)+ and [PtCl6]2− and [PtCl4]2− ions, respectively, linked by intermolecular hydrogen bonds N...Cl [range from 3.428(3) to 3.584(4) Å ], N···O [2.769(5) Å ] and O···Cl [3.338(4) and 3.321(3) Å ] for 1, and N···Cl [3.162(7) Å ], N···O [2.749(8) Å ] and O···Cl [3.289(6) Å ] for 2.


2010 ◽  
Vol 65 (10) ◽  
pp. 1258-1266 ◽  
Author(s):  
Christoph Wölper ◽  
Alejandra Rodríguez-Gimeno ◽  
Matthias Freytag ◽  
Peter G. Jones ◽  
Armand Blaschette

The four title compounds, Me2NH2+·(4-Cl/Br/I/Me-C6H4-SO2)2N-, were obtained by metathesis of dimethylammonium chloride with the corresponding silver di(arenesulfonyl)amides. The products crystallize isotypically in the monoclinic space group Cc (Z = 4, Z´ = 1). In each structure, the ionic entities associate into hydrogen-bonded chains, which propagate along the c axis of the crystals and consist of alternating cations and anions held together by charge-assisted N+-H· · ·N− and N+- H(· · ·O)2 hydrogen bonds. In the three structures containing 4-halobenzenesulfonyl groups, each hydrogen-bonded chain is linked to four neighboring chains by pairs of C-Cl/Br/I· · ·O halogen bonds, which at first sight seem to be the causative factor in the formation of catemeric head-to-tail arrays of anions propagating along the ab face diagonals. On suppressing these halogen bonds by means of halogen-methyl exchange, all essential features of the packing architecture, including the anion headto- tail arrays, are precisely maintained. It may be thus inferred that the halogen bonds occurring in the first three compounds are supportive incidentals, but do not play any structure-determining role.


1992 ◽  
Vol 70 (3) ◽  
pp. 919-925 ◽  
Author(s):  
A. Wallace Cordes ◽  
Charles M. Chamchoumis ◽  
Robin G. Hicks ◽  
Richard T. Oakley ◽  
Kelly M. Young ◽  
...  

The preparation and solid state characterization of the bifunctional radical furan-2,5-bis(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN2S2)] and the related monofunctional radical 2-cyanofuran-5-(1,2,3,5-dithiadiazolyl) 2,5-[(S2N2C)OC4H2(CN)] are described. The crystal structure of 2,5-[(S2N2C)OC4H2(CN2S2)] is orthorhombic, space group Pna21, and consists of interleaved arrays of dimers, for which the mean interannular [Formula: see text] contact is 3.137 Å. The crystal structure of the monofunctional radical 2,5-[(S2N2C)OC4H2(CN)] is monoclinic, space group P21/n, and consists of a ribbon-like network of dimers (mean interannular [Formula: see text] interconnected by close head-to-tail [Formula: see text] contacts. The dimer units form stacks parallel to z, with a mean interdimer [Formula: see text] separation of 3.956 Å. The similarities and differences between these two crystal structures and those of related benzene-substituted systems are discussed. Keywords: dithiadiazolyl radicals, furan-based diradicals, cyanofuran-based radicals, radical dimers, crystal structures.


2010 ◽  
Vol 65 (7) ◽  
pp. 907-916 ◽  
Author(s):  
Ioannis Tiritiris ◽  
Falk Lissner ◽  
Thomas Schleid ◽  
Willi Kantlehner

Dicationic N,N´,N´,N´´,N´´-pentasubstituted guanidinium dichlorides 4a, b are obtained from the chloroformamidinium salt 2 and diamines 3a, b. N-[2-(Dimethylammonio)ethyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5a) and N-[3-(dimethylammonio)propyl]-N´,N´,N´´,N´´-tetramethylguanidinium chloride tetraphenylborate (5b) were synthesized from 4a, b by anion metathesis with one equivalent of sodium tetraphenylborate. The thermal properties of the salts 5a, b were studied by means of DSC methods, and their crystal structures were determined by single-crystal X-ray diffraction analysis. For 5a a solid-solid phase transition is observed at −156 ◦C to a low-temperature structure. The room-temperature modification (α-5a) crystallizes in the centrosymmetric orthorhombic space group Pbca (a = 13.1844(4), b = 13.8007(4), c = 34.7537(11) A° ).The guanidinium ions are interconnected via chloride ions through bridging N-H· · ·Cl hydrogen bonds, providing isolated units. The tetraphenylborate ions show some dynamic disordering in the crystal structure. The low-temperature modification (β -5a) also crystallizes orthorhombically, but in the non-centrosymmetric space group Pna21 (a = 13.1099(4), b = 69.1810(11), c = 13.5847(5) A° ) and consists of four crystallographically independent cations and anions in the unit cell. Compared with the room-temperature structure, a similar N-H· · ·Cl hydrogen bond pattern is observed in the β -phase, but the tetraphenylborate ions are now completely ordered. 5b crystallizes in the monoclinic space group P21/c (a = 10.8010(3), b = 14.1502(5), c = 20.9867(9) A° , β = 94.322(1)◦). In the crystal structure the guanidinium ions are linked via chloride ions through N-H· · ·Cl hydrogen bonds, but in contrast to 5a two infinite strands are formed along the a axis with the tetraphenylborate ions interspersed between them for charge compensation.


2019 ◽  
Vol 74 (9) ◽  
pp. 649-663
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Alan B. Turner ◽  
Alexander W. Nowicki ◽  
Thomas C. Baddeley ◽  
...  

AbstractThe crystal structures and Hirshfeld surface analyses of the des-A-B-aromatic steroid derivative, (3a,9b)-1,2,3a,4,5,9b-hexahydro-7-methoxy-3a-methyl-3H-benz[e]-inden-3-one (or 5-methoxy-des-A-estra-5,7,9-triene-17-one) 1, its acetohydrazide derivative, 2, and its hydrazone derivative, 3, are reported. All three compounds crystallize in chiral space groups: compounds 1 and 2 in the orthorhombic space group P212121 each with one molecule in the asymmetric unit, and compound 3 in the monoclinic space group P21 with two similar but independent molecules, Mol A and Mol B, in the asymmetric unit. Both the five-membered and six-membered non-aromatic rings in all three compounds have envelope or near envelope shapes. In compounds 2 and 3 the N=N units have (E)-arrangements. The intermolecular interactions in crystals of compound 1 are C–H · · · O hydrogen bonds and C–H · · · π interactions, in compound 2 N–H · · · O and C–H · · · O hydrogen bonds and C–H · · · π interactions are present, while in compound 3 there are just C–H · · · π interactions. An important substructure in 1 is a sheet of molecules, composed of ${\rm{R}}_6^6(44)$ rings, formed from C–H · · · O(methoxy) and C–H · · · O(carbonyl) hydrogen bonds, the molecules of which form columns linked via the B and D rings, i.e. in a head-to-tail fashion. Compound 2 is an acylhydrazonyl compound, in which the two independent molecules are linked into asymmetric dimers via strong classical N–H · · · O hydrogen bonds, with the formation of ${\rm{R}}_2^2(8)$ rings. In both 1 and 2, further intermolecular interactions result in 3-dimensional structures, while compound 3 has a 1-dimensional structure arising from C–H · · · O interactions generating spiral chains. The results have been compared with existing data.


1996 ◽  
Vol 51 (10) ◽  
pp. 1469-1472 ◽  
Author(s):  
Joachim Pickardt ◽  
Britta Kühn

Crystals of |Zn(cnge)2(SCN)2]-2H2O (1) were obtained by evaporation of an aqueous solution of Z n(SO4)·7H2O , KSCN, and cyanoguanidine. Crystals of Zn(eoge)Br2 (2) were obtained by reaction of ZnBr2 and cyanoguanidine in ethanol/water. Both compounds are monoclinic, space group C2/c, 1: Z = 4, a = 1919.6(7), b = 467.3(2), c = 1838.5(6) pm, β = 112.99(3)°, 2: Z = 8, a = 1799.5(6), b = 878.7(2), c = 1367.2(5) pm, β = 101.52(3)°. In 1 each Zn is bonded to two cyanoguanidine molecules and via the N atoms to two NCS groups. Intermolecular hydrogen bonds lead to chains along the a-axis, and these chains are again connected via hydrogen bonds to the two crystal water molecules. In the course of the formation of 2, the cyanoguanidine reacted with the ethanol to form 1-ethoxyiminomethylguanidine. This ligand forms chelate rings with the Zn atoms, which are tetrahedrally coordinated by the two imino N atoms of the ligand and by two bromine atoms.


1999 ◽  
Vol 52 (8) ◽  
pp. 817 ◽  
Author(s):  
Alison M. Funston ◽  
Robert W. Gable ◽  
W. David McFadyen ◽  
Peter A. Tregloan

The complex [Co(en)2(DPPZ)] (ClO4)3 (3) has been synthesized, and the crystal structures of this complex and those of [Co(en)2(bpy)] Br(ClO4)2 (1) and [Co(en)2(phen)] Br3 (2) have been determined. Crystal data for (1): M 614 . 13, monoclinic, space group C2/c (No. 15), a 16 . 7834(16), b 16 . 308(3), c 8 . 3167(15) Å, β 104 . 932(11)°, V 2199 . 4(6) Å, F(000) 1240, Z 4, Dc 1 . 855 g cm−3, µ 2 . 895 cm−1 , Mo Kα (graphite monochromatized) radiation, γ 0 . 71073 Å, T 293(1) K. Crystal data for (2): M 599 . 07, triclinic, space group P1 (No. 2), a 7 . 7113(11), b 10 . 633(2), c 12 . 9884(18) Å, α 85 . 745(15), b 78 . 258(11), γ 74 . 967(16)°, V 1006 . 7(3) Å, F(000) 588, Z 2, Dc 1 . 976 g cm−3, µ6 . 819 cm−1 , MoKα (graphite monochromatized) radiation, γ 0 . 71073 Å, T 293(1) K. Crystal data for (3): M 773 . 44, monoclinic, space group P 21/c (No. 14), a 20 . 296(2), b 9 . 6197(11), c 15 . 725(2) Å, β 92 . 850(10)°, V 3066 . 4(6) Å, F(000) 1579, Z 4, Dc 1 . 675 g cm−3 , µ 0 . 898 cm−1 , MoKα(graphite monochromatized) radiation, γ 0 . 71073 Å, T 293(1) K. In all three complexes the cobalt is in the usual octahedral environment, with the cations being linked by hydrogen bonds between the amine hydrogens and the anions into extended structures.


Sign in / Sign up

Export Citation Format

Share Document