Structure (neutron) of room-temperature phase III potassium iodate, KIO3

1984 ◽  
Vol 40 (12) ◽  
pp. 1989-1992 ◽  
Author(s):  
B. W. Lucas
1991 ◽  
Vol 46 (12) ◽  
pp. 1063-1082 ◽  
Author(s):  
V. G. Krishnan ◽  
Shi-qi Dou ◽  
Alarich Weiss

Abstract The 79-81Br NQR spectra of tribromocadmates with the cations K⊕, NH4⊕, Rb⊕, Cs⊕, CH3NH3⊕, (CH3)2NH2⊕, (CH3)4N⊕, H2NNH3⊕, and C(NH2)3⊕ were studied as functions of temperature from 77 K on up to T>300 K. CsCdBr3 shows a singlet 81Br NQR spectrum over the whole temperature range studied. [CH3NH3]CdBr3, with one 81Br NQR line spectrum at room temperature, experiences a phase transition at 167 K; below this temperature an 18-line spectrum is observed. In [(CH3)4N]CdBr3 (phase II), at 290 K, a singlet 81Br NQR is present as is in the high temperature phase III (TII.1 , = 390 K); the low temperature phase III (TII,m, = 160 K has a triplet 81Br NQR spectrum. KCdBr3 shows an 81Br NQR doublet spectrum, as do RbCdBr3, [H2NNH3]CdBr3, and [C(NH2)3]CdBr3. 81Br NQR triplets are observed for [(CH3)2NH2]CdBr3 and NH4CdBr3. Several crystal structures were determined (at room temperature). [(CH3)4N]CdBr3: P63/m, Z = 2, a - 940 pm, c = 700 pm, disordered cation, single chain Perovskite with face connected [CdBr6]- octahedra (nearly CsNiCl3-type). [(CH3)2NH2]CdBr3: P21/c, Z = 4, a = 898 pm, 6 = 1377 pm, c = 698 pm, ß = 91.2°, face connected [CdBr3-octahedra single chain Perovskite. NH4CdBr3: Pnma, Z = 4, a = 950 pm, b = 417 pm, c= 1557 pm, with a double chain of condensed [CdBr6]-octahedra, NH4CdCl3-type. [N2H5]CdBr3: P2,/c, Z = 4, a = 395 pm, 6 = 1749 pm,c = 997 pm,ß = 94.2°, double chain polyanion similar to NH4CdBr3. [C(NH2)3]CdBr3: C2/c, Z = 4, a = 778 pm, 6 = 1598 pm, c = 746 pm, ß = 110.2°, a single chain Perovskite with a chain of condensed trigonal bipyramids [CdBr5]. Three types of anion chains of CdBr3 have been observed: Single octahedral chains, face connected; double octahedral chains, edge connected; a trigonal-bipyramidal chain, edge connected. The relation between the crystal structure and the Br NQR is discussed


Author(s):  
Jan Fábry ◽  
Michal Dušek

The structure determinations of phases (II) and (III) of barium dicalcium hexakis(propanoate) {or poly[hexa-μ4-propanoato-bariumdicalcium], [BaCa2(C3H5O2)6] n } are reported at 240 and 130 K, respectively [phase (I) was determined previously by Stadnicka & Glazer (1980). Acta Cryst. B36, 2977–2985; our structure determination of phase (I) at room temperature is included in the supporting information]. In the high-temperature phase, the Ba2+ cation is surrounded by six carboxylate groups in bidentate bridging modes. In the low-temperature phases, five carboxylate groups act in bidentate bridging modes and one acts in a monodentate bridging mode around Ba2+. The Ca2+ cations are surrounded by six carboxylate O atoms in a trigonal antiprism in all the structures. The Ba2+ and Ca2+ cations are underbonded and significantly overbonded, respectively, in all the phases. The bonding of the Ba2+ cation increases slightly at the cost of the bonding of Ca2+ cations during cooling to the low-temperature phases. The phase transitions during cooling are accompanied by ordering of the ethyl chains. In room-temperature phase (I), all six ethyl chains are positionally disordered over two positions in the crossed mode, with additional splitting of the ethyl α- and β-C atoms. In phase (II), on the other hand, there are three disordered ethyl chains, one with positionally disordered ethyl α- and β-C atoms, and the other two with positionally disordered ethyl β-C atoms only, and in the lowest-temperature phase (III) there are four ordered ethyl chains and two disordered ethyl chains with positionally disordered ethyl β-C atoms only.


Author(s):  
Christian Scherf ◽  
Nicolay R. Ivanov ◽  
Su Jin Chung ◽  
Theo Hahn ◽  
Helmut Klapper

AbstractThe transitions between the room temperature phase III (space group


2009 ◽  
Vol 65 (6) ◽  
pp. 659-663 ◽  
Author(s):  
Evelyn J. Freney ◽  
Laurence A. J. Garvie ◽  
Thomas L. Groy ◽  
Peter R. Buseck

Oriented single crystals of the high-temperature phase of KNO3 (phase III), a ferroelectric compound that may also occur as an atmospheric aerosol particle, were grown at room temperature and pressure by atomizing a solution of KNO3 in water and allowing droplets to dry on a glass substrate. The crystals are up to 1 mm across and are stable unless mechanically disturbed. There is no evidence of the spontaneous transformation of phase III to the room-temperature stable phase (phase II), even after several months. Single-crystal structure determinations of phase III were obtained at 295 and 123 K. The unit cell regained its room-temperature dimensions after warming from 123 K. The phase-III KNO3 structure can be viewed as the stacking parallel to the c axis of alternating K atoms and planar NO3 groups. The NO3 groups connect the planes of K atoms, where each O is fourfold coordinated to one N and three K. Each K atom has nine O nearest neighbors, with three bonds at 2.813 and six at 2.9092 Å. The interatomic K—N—K distance alternates from 5.051 to 3.941 along the c axis. The N—O distances increase from 1.245 (2) Å at 295 K to 1.2533 (15) Å at 123 K. The nitrate group has a slight non-planarity, with the N atoms 0.011 Å above the O plane and directed toward the more distant K of the K—N—K chain.


Author(s):  
Naoki Yamamoto ◽  
Makoto Kikuchi ◽  
Tooru Atake ◽  
Akihiro Hamano ◽  
Yasutoshi Saito

BaZnGeO4 undergoes many phase transitions from I to V phase. The highest temperature phase I has a BaAl2O4 type structure with a hexagonal lattice. Recent X-ray diffraction study showed that the incommensurate (IC) lattice modulation appears along the c axis in the III and IV phases with a period of about 4c, and a commensurate (C) phase with a modulated period of 4c exists between the III and IV phases in the narrow temperature region (—58°C to —47°C on cooling), called the III' phase. The modulations in the IC phases are considered displacive type, but the detailed structures have not been studied. It is also not clear whether the modulation changes into periodic arrays of discommensurations (DC’s) near the III-III' and IV-V phase transition temperature as found in the ferroelectric materials such as Rb2ZnCl4.At room temperature (III phase) satellite reflections were seen around the fundamental reflections in a diffraction pattern (Fig.1) and they aligned along a certain direction deviated from the c* direction, which indicates that the modulation wave vector q tilts from the c* axis. The tilt angle is about 2 degree at room temperature and depends on temperature.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 611
Author(s):  
Ekaterina Orlova ◽  
Elena Kharitonova ◽  
Timofei Sorokin ◽  
Alexander Antipin ◽  
Nataliya Novikova ◽  
...  

The literature data and the results obtained by the authors on the study of the structure and properties of a series of polycrystalline and single-crystal samples of pure and Mg-doped oxymolybdates Ln2MoO6 (Ln = La, Pr, Nd) are analyzed. Presumably, the high-temperature phase I41/acd of Nd2MoO6 single crystals is retained at room temperature. The reason for the loss of the center of symmetry in the structures of La2MoO6 and Pr2MoO6 and the transition to the space group I4¯c2 is the displacement of oxygen atoms along the twofold diagonal axes. In all structures, Mg cations are localized near the positions of the Mo atoms, and the splitting of the positions of the atoms of rare-earth elements is found. Thermogravimetric studies, as well as infrared spectroscopy data for hydrated samples of Ln2MoO6 (Ln = La, Pr, Nd), pure and with an impurity of Mg, confirm their hygroscopic properties.


2011 ◽  
Vol 4 (10) ◽  
pp. 101701 ◽  
Author(s):  
Atsushi Yoshizawa ◽  
Michi Kamiyama ◽  
Tetsu Hirose

Author(s):  
S. Kek ◽  
M. Grotepaß-Deuter ◽  
K. Fischer ◽  
K. Eichhorn

AbstractThe crystal structure of deuterated betaine arsenate, (CHThe both paraelectric and ferroelastic room-temperature phase of betaine arsenate crystallizes in space group


Sign in / Sign up

Export Citation Format

Share Document