scholarly journals Hydrogen bonds and dynamics of crystalline amino acids: a synergetic effect of combining X-ray diffraction and single-crystal polarized Raman spectroscopy

2010 ◽  
Vol 66 (a1) ◽  
pp. s80-s80
Author(s):  
Elena V. Boldyreva ◽  
Boris Kolesov
2012 ◽  
Vol 68 (3) ◽  
pp. 275-286 ◽  
Author(s):  
Boris A. Zakharov ◽  
Boris A. Kolesov ◽  
Elena V. Boldyreva

Information on the effect of pressure on hydrogen bonds, which could be derived from single-crystal X-ray diffraction at a laboratory source and polarized Raman spectroscopy, has been compared. L-Serine and DL-serine were selected for this case study. The role of hydrogen bonds in pressure-induced phase transitions in the first system and in the structural stability of the second one are discussed. Non-monotonic distortion of selected hydrogen bonds in the pressure range below ∼ 1–2 GPa, a change in the compression mechanism at ∼ 2–3 GPa, and the evidence of formation of bifurcated N—H...O hydrogen bonds in DL-serine at ∼ 3–4 GPa are considered.


2014 ◽  
Vol 70 (a1) ◽  
pp. C550-C550
Author(s):  
Eugene Kapustin ◽  
Vasily Minkov ◽  
Elena Boldyreva

Crystalline amino acids are considered to mimic important interactions in peptides, therefore the studies of the structure-forming factors in these systems attract much attention. N,N-dimethylglycine is an interesting model compound that was used to test the role of the N-H...O H-bonds in forming the head-to-tail chains – the main structural unit in the crystals of amino acids. It was hypothesized previously that additional side N-H...O H-bonds play an important role in forming the head-to-tail chains of amino acid zwitterions linked via N-H...O H-bonds between the charged -NH3 and -COO terminal groups. Twice methylated amino group of N,N-dimethylglycine is able to form only one N-H...O H-bond in the crystal structure, so that this hypothesis could be tested. There are two polymorphs of N,N-dimethylglycine, in which the zwitterions are packed in two different ways. In one polymorph (orthorhombic, Pbca) they form finite four member ring motifs not linked to each other via any H-bonds, but only by weak van der Waals interactions. However, in the second polymorph (monoclinic, P21/n) the zwitterions do form infinite head-to-tail chains though the N-H...O H-bond is the only one and is not assisted via any additional H-bonds. The effect of cooling on the two crystal structures was followed by single-crystal X-ray diffraction combined with polarized Raman spectroscopy of oriented single crystals, in order to compare the response of the N-H...O H-bonds to temperature variations. The crystal structure of the monoclinic polymorph compresses anisotropically on cooling, whereas that of the orthorhombic polymorph undergoes a reversible single-crystal to single-crystal phase transition at ~200 K accompanied by non-merohedral twinning, reducing the space symmetry to monoclinic (P21/b), and doubling the asymmetric unit from 2 to 4 molecules. This phase transition could not be detected by Raman spectroscopy and DSC because of the subtle related changes in intermolecular energies.


Sign in / Sign up

Export Citation Format

Share Document