Conformational Isomerism of the Host as a Factor in Molecular Recognition in Host–Guest Inclusion Complexes: Example of Tris(5-acetyl-3-thienyl)methane

1997 ◽  
Vol 53 (1) ◽  
pp. 168-175 ◽  
Author(s):  
F. H. Herbstein

The tripod molecule tris(5-acetyl-3-thienyl)methane (TATM) is a flexile molecule, i.e. one that can occur in many conformationally isomeric states (conformers), which forms host–guest inclusion complexes with a large variety of guests (solvents). Some 40-odd different types of guest have been reported to form inclusion complexes. Five different types of crystal structure (all racemic), with nine different guests, have been reported in the literature and structural information is available for 17 crystallographically independent TATM molecules; most of the guests are disordered. Our analysis of this (substantial but, nevertheless, incomplete) database shows that each group of crystallographically isomorphous structures contains a particular TATM conformer with characteristic torsion angles about the bonds between methane carbon and the three thienyl rings (τ1, τ2 and τ3); the range of torsion angles in a particular structural group does not exceed 10°. Conformers are in addition distinguished via the stereochemistry of the acetyl group; there are approximately equal numbers of examples with carbonyl oxygen syn or anti to ring sulfur, intermediate conformations not being found. So far three different types of conformer have been encountered for the TATM molecule considered as an entity. A necessary condition for the occurrence of a particular conformer type is that the torsion angles τ1, τ2 and τ3 are such that ring H atoms should not approach more closely than (say) 2.4 Å, but this is not sufficient as considerably larger distances are found in some conformer types. Crystallization of the inclusion complex from a particular solvent can be envisaged to occur as follows. The TATM solution will contain a Boltzmann distribution of host conformers, the distribution depending on temperature but not on the nature of the solvent. Under suitable temperature and solubility conditions, the solvent will crystallize together with the appropriate conformer to form the inclusion complex-nuclei formed at this recognition stage, then grow into crystallites of the inclusion complex. The perturbed Boltzmann distribution (depleted in appropriate conformer) will continuously revert to its equilibrium form by conversion of the non-appropriate into the appropriate conformer as the crystallization proceeds.

2013 ◽  
Vol 85 (9) ◽  
pp. 1759-1770 ◽  
Author(s):  
Robert Pendrill ◽  
K. Hanna M. Jonsson ◽  
Göran Widmalm

Glycan structural information is a prerequisite for elucidation of carbohydrate function in biological systems. To this end we employ a tripod approach for investigation of carbohydrate 3D structure and dynamics based on organic synthesis; different experimental spectroscopy techniques, NMR being of prime importance; and molecular simulations using, in particular, molecular dynamics (MD) simulations. The synthesis of oligosaccharides in the form of glucosyl fluorides is described, and their use as substrates for the Lam16A E115S glucosyl synthase is exemplified as well as a conformational analysis of a cyclic β-(1→3)-heptaglucan based on molecular simulations. The flexibility of the N-acetyl group of aminosugars is by MD simulations indicated to function as a gatekeeper for transitions of glycosidic torsion angles to other regions of conformational space. A novel approach to visualize glycoprotein (GP) structures is presented in which the protein is shown by, for example, ribbons, but instead of stick or space-filling models for the carbohydrate portion it is visualized by the colored geometrical figures known as CFG representation in a 3D way, which we denote 3D-CFG, thereby effectively highlighting the sugar residues of the glycan part of the GP and the position(s) on the protein.


2018 ◽  
Vol 69 (7) ◽  
pp. 1838-1841
Author(s):  
Hajnal Kelemen ◽  
Angella Csillag ◽  
Bela Noszal ◽  
Gabor Orgovan

Ezetimibe, the antihyperlipidemic drug of poor bioavailability was complexed with native and derivatized cyclodextrins.The complexes were characterized in terms stability, stoichiometry and structure using various 1D and 2D solution NMR spectroscopic techniques. The complexes were found to be of moderate stability (logK[3). The least stable inclusion complex is formed with b-cyclodextrin, while the ezetimibe-methylated-b--cyclodextrin has a 7-fold higher stability. The results can be useful to improve the poor water-solubility and the concomitant bioavailability of ezetimibe.


RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13091-13096
Author(s):  
Lu Chen ◽  
Yanbin Huang

Guest polymers have significant influence on the dissolution of drug–polymer inclusion complex crystals.


2017 ◽  
Vol 5 (2) ◽  
pp. 195
Author(s):  
Mayara Coêlho ◽  
Herlane Da Silva ◽  
Muhammad Islam ◽  
Vicente Viana ◽  
Ana Amélia Melo-Cavalcante

Nerol is an acyclic type monoterpene with important biological activities. However, the low solubility in aqueous media is a limiting factor for its user. Cyclodextrins have been widely used in order to improve the solubility, stability and bioavailability of nonpolar molecules through the formation of inclusion complexes. Thus, the present study consists in the development of nerol inclusion complex in combination with the β-cyclodextrin (β-CD) followed by characterizing by thermal analysis and spectrophotometric absorption in the infrared (FTIR). The results suggest a complexation of nerol with β-CD having detours and changed the intensity of various bands. The thermo gravimetric curve of CI found to indicate an output of solvating water molecules from the complex cavity formed for replacement of drug molecules probably included. Thus, it is concluded a possibility to obtain inclusion complexes of nerol monoterpene with β-CD, which will increase its solubility and facilitate delivery process.


2021 ◽  
pp. 27-32
Author(s):  
Olga Mikhailovna Balakhonova ◽  
Viktoriya Sergeevna Tyukova ◽  
Stanislav Anatolievich Kedik

The paper presents the results of a study of the stability of aqueous solutions of inclusion complexes of hydroxypropyl-β-cyclodextrin with diisopropylphenol in various systems by the Higuchi-Connors phase solubility method. The phase solubility profiles for each system corresponding to the AN type are determined graphically, and the stability constants of the resulting inclusion complexes are calculated. An aqueous solution containing 0.2 % Tween 80 and 0.2 % mannitol was selected as the optimal condition for obtaining the hydroxypropyl-β-cyclodextrin inclusion complex with diisopropylphenol.


Author(s):  
S. Ain ◽  
R. Singh ◽  
Q. Ain

<p><strong>Objective: </strong>The aim of the present study was to carry out characterization and intrinsic dissolution rate study of microwave assisted inclusion complex of poorly water soluble, lipid lowering agent gemfibrozil [5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid]<strong> </strong>with naturally occurring β-cyclodextrins (CDs) or cycloheptaamylase.</p><p><strong>Methods: </strong>In this work, the phase solubility study was performed to find the ratio of drug and cyclodextrin complexes. Inclusion complexes were prepared by kneading and the prepared complex was subjected to microwave drying and conventional drying techniques. The prepared complexes were evaluated by intrinsic dissolution rate studies and equilibrium solubility study. Further characterization was done by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (DSC).</p><p><strong>Results: </strong>The phase solubility studies showed a linear A<sub>L</sub>-type diagram indicating the formation of inclusion complexes in 1:1 molar ratio β-CD-gemfibrozil complex with maximum stability constant of 148.88 M<sup>-1</sup>was selected for preparation of inclusion complex. The microwave dried product was identified as the inclusion complex with maximum IDR when compared to the conventional dried product.</p><p><strong>Conclusion: </strong>This study was concluded that the microwave drying is the most suitable of the previously occurring drying techniques. Since it showed the highest solubility and IDR value.</p>


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4487 ◽  
Author(s):  
Wenhui Li ◽  
Lidan Ran ◽  
Fei Liu ◽  
Ran Hou ◽  
Wei Zhao ◽  
...  

Grape seed extract (GSE) displays strong antioxidant activity, but its instability creates barriers to its applications. Herein, three HP-β-CD/GSE inclusion complexes with host–guest ratios of 1:0.5, 1:1, and 1:2 were successfully prepared by co-precipitation method to improve stability. Successful embedding of GSE in the HP-β-CD cavity was confirmed by fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analyses. The Autodock Tools 1.5.6 was used to simulate the three-dimensional supramolecular structure of the inclusion complex of 2-hydroxypropyl-β-cyclodextrin and grape seed extract (HP-β-CD/GSE) by molecular docking. The MALDI-TOF-MS technology and chemical database Pubchem, and structural database PDB were combined to reconstitute the three-dimensional structure of target protein. The binding mode of the HP-β-CD/GSE inclusion complex to target protein was studied at the molecular level, and the antioxidant ability of the resulting HP-β-CD/GSE inclusion complexes was investigated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. The effects of HP-β-CD/GSE on myofibrillar protein from lamb tripe were also investigated under oxidative conditions. The positions and interactions of the binding sites of HP-β-CD/GSE inclusion complexes and target protein receptors were simulated by molecular docking. The results showed that HP-β-CD/GSE inclusion complexes were successfully prepared, optimally at a molar ratio of 1:2. At low (5 μmol/g) to medium (105 μmol/g) concentrations, HP-β-CD/GSE inclusion complexes decreased the carbonyl content, hydrophobicity, and protein aggregation of myofibrillar protein from lamb tripe, and increased the sulphydryl content. Furthermore, high concentration (155 μmol/g) of HP-β-CD/GSE inclusion complexes promoted protein oxidation.


1989 ◽  
Vol 67 (10) ◽  
pp. 1550-1553 ◽  
Author(s):  
Ramamurthy Palepu ◽  
Vincent C. Reinsborough

Pre-micellar and micellar sodium perfluorooctanoate solutions (SPFO) were examined conductometrically with added α-cyclodextrin(α-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD). The order of stability of the 1:1 inclusion complex was (β-CD > γ-CD > α-CD determined largely by the goodness of fit of the fluorocarbon chain in the CD cavity. Sodium ion electrode studies revealed that some Na+ ion is associated with the (β-CD/SPFO complex. As shown by fluorine-19 nmr, (β-CD girds the SPFO molecule snugly amidship with the terminal CF3 group still in solution. On the other hand, SPFO manages only a weak penetration of the fluorocarbon chain into the smaller α-CD cavity. Keywords: perflurooctanoate, cyclodextrin complexes, fluorocarbon surfactant, 19F nmr.


Sign in / Sign up

Export Citation Format

Share Document