scholarly journals CHARACTERIZATION AND INTRINSIC DISSOLUTION RATE STUDY OF MICROWAVE ASSISTED CYCLODEXTRIN INCLUSION COMPLEXES OF GEMFIBROZIL

Author(s):  
S. Ain ◽  
R. Singh ◽  
Q. Ain

<p><strong>Objective: </strong>The aim of the present study was to carry out characterization and intrinsic dissolution rate study of microwave assisted inclusion complex of poorly water soluble, lipid lowering agent gemfibrozil [5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid]<strong> </strong>with naturally occurring β-cyclodextrins (CDs) or cycloheptaamylase.</p><p><strong>Methods: </strong>In this work, the phase solubility study was performed to find the ratio of drug and cyclodextrin complexes. Inclusion complexes were prepared by kneading and the prepared complex was subjected to microwave drying and conventional drying techniques. The prepared complexes were evaluated by intrinsic dissolution rate studies and equilibrium solubility study. Further characterization was done by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (DSC).</p><p><strong>Results: </strong>The phase solubility studies showed a linear A<sub>L</sub>-type diagram indicating the formation of inclusion complexes in 1:1 molar ratio β-CD-gemfibrozil complex with maximum stability constant of 148.88 M<sup>-1</sup>was selected for preparation of inclusion complex. The microwave dried product was identified as the inclusion complex with maximum IDR when compared to the conventional dried product.</p><p><strong>Conclusion: </strong>This study was concluded that the microwave drying is the most suitable of the previously occurring drying techniques. Since it showed the highest solubility and IDR value.</p>

2017 ◽  
Vol 16 (10) ◽  
pp. 2359-2364
Author(s):  
Zwanden Sule Yahaya ◽  
Kenneth C. Ofokansi ◽  
Suzane T. Allagh ◽  
Pat G. Bhatia

Purpose: To investigate experimentally the inclusion of artemether into the cavity of  hydroxypropyl-β-cyclodextrin and examine its effect on the solubility and dissolution rate of the drug.Methods: Inclusion complexes of artemether with hydroxypropyl-β-cyclodextrin of molar ratios 1:1, 1:2 and 1:3 were prepared using the kneading method. Phase solubility analysis and in vitro dissolution studies were utilized in evaluating the influence of inclusion complex formation on the solubility and dissolution rate of the drug. The complexes were characterized using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The inclusion complex containing equimolar concentrations of artemether and hydroxypropyl-β-cyclodextrin was then formulated into tablets via direct compression and  evaluated for various pharmaceutical characteristics including hardness, friability, absolute drug content and comparative in vitro dissolution profiles with some  commercially available brands of artemether.Results: The phase solubility diagram for the formed complexes in water at 37 oC indicated a linear curve soluble complex system (referred to as the AL system), and a stability constant (KC) value of 143 M-1. Evidence consistent with inclusion complex formation was obtained using FT-IR and DSC. The formulated inclusion complex tablets exhibited a higher rate of dissolution than the pure drug and commercial brands, showing 3.9-, 1.8- and 1.6-fold increases, respectively, over a period of 15 min.Conclusion: Inclusion complexation of artemether with hydroxypropyl-β-cyclodextrin is a promising approach to enhance the solubility and dissolution rate of the drug.Keywords: Artemether, 2-Hydroxypropyl-β-cyclodextrin, Dissolution, Solubility enhancement, Inclusion complex


2012 ◽  
Vol 554-556 ◽  
pp. 922-925
Author(s):  
Xiao Yan Zhang ◽  
Yong Peng ◽  
Guo Qing He

Phytosterol has been shown to lower the serum cholesterol concentrations, but its low solubility in water restricts its application. In this study, hydroxypropyl-β-cyclodextrin was used to improve the water-solubility of phytosterol. Phase solubility study pointed out the formation of 1:1 inclusion complexes between phytosterol and hydroxypropyl-β-cyclodextrin. The initial dissolution rate was remarkedly improved in the first two minutes. The suitable solvent and temperature for complex formation was n-butanol and 40°C.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


Author(s):  
Shabnam Ain ◽  
V Gupta ◽  
Babita K ◽  
Q Ain ◽  
J Dahiya

Aqueous solubility is a critical factor for optimum drug delivery. In the present study, we investigated the potential of drug-cyclodextrin complexation as an approach for improving the solubility and bioavailability of famotidine, an H2-receptor antagonist and acid reducing drug which has poor solubility and bioavailability. Solubility improvement of drug by β-cyclodextrin was done by simple complexation approach using physical, kneading and co-precipitation methods and compared with physical mixture. Phase solubility profile indicated that the solubility of famotidine was significantly increased in presence of β-cyclodextrin and shows a linear graph with β-cyclodextrin indicating formation of inclusion complexes in a 1:1 molar ratio. β-Cyclodextrin-famotidine mixture have maximum stability constant 1477.6 M-1. The inclusion complex ratio 1:1 of kneading mixture was selected based on drug release profile and compared with physical mixture. Further characterization was done by  using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) to identify the physicochemical interaction between drug and carrier and its effect on dissolution. Dissolution rate studies for selected inclusion complex was performed in 0.1 N HCl (pH 1.2), phosphate buffer (pH 7.5) and distilled water (pH 6.8) and compared these to pure drug profile which was found to be 2.34 fold increase in distilled water, 1.83 fold in HCl and 2.01 fold in phosphate buffer (pH 7.5). These results suggest that the kneaded complex of famotidine with β-cyclodextrin as hydrophilic complexation agent can substantially enhance the solubility and dissolution rate. Such complex has promising potential to improve the bioavailability of famotidine.  


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (11) ◽  
pp. 19-23
Author(s):  
J Shaikh ◽  
◽  
S. V. Deshmane ◽  
R. N Purohit ◽  
K. R. Biyani

The main objective of the present study was to enhance the solubility and dissolution rate of poorly water soluble aceclofenac using its solid dispersion with β-cyclodextrin. FTIR and DSC study was carried out to find out any incompatibility. The phase solubility of drug was carried out in 1, 2, 5, and 10% of β-cyclodextrin in distilled water. Kneading method and solvent evaporation method was use to prepared solid dispersion of aceclofenac and β-cyclodextrin. Different evaluation tests like solubility study in different solvents, PXRD and in vitro dissolution study of aceclofenac- β-cyclodextrin inclusion complex were carried out. The overall finding indicated that β-cyclodextrin is a desirable water soluble carrier, that helps in increasing solubility of drug. Due to its structural feature, β-cyclodextrin forms a good inclusion complex that decreases contact angle of drug with water molecules by increasing wetting properties. Hence, it can be concluded that, β-cyclodextrin is better water soluble carrier molecule in terms of its compatibility and increasing solubility behavior of poorly water soluble drug aceclofenac.


2021 ◽  
pp. 27-32
Author(s):  
Olga Mikhailovna Balakhonova ◽  
Viktoriya Sergeevna Tyukova ◽  
Stanislav Anatolievich Kedik

The paper presents the results of a study of the stability of aqueous solutions of inclusion complexes of hydroxypropyl-β-cyclodextrin with diisopropylphenol in various systems by the Higuchi-Connors phase solubility method. The phase solubility profiles for each system corresponding to the AN type are determined graphically, and the stability constants of the resulting inclusion complexes are calculated. An aqueous solution containing 0.2 % Tween 80 and 0.2 % mannitol was selected as the optimal condition for obtaining the hydroxypropyl-β-cyclodextrin inclusion complex with diisopropylphenol.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 493
Author(s):  
Alexandra Teleki ◽  
Olivia Nylander ◽  
Christel A.S. Bergström

The intrinsic dissolution rate (IDR) of active pharmaceutical ingredients (API) is a key property that aids in early drug development, especially selecting formulation strategies to improve dissolution and thereby drug absorption in the intestine. Here, we developed a robust method for rapid, medium throughput screening of IDR and established the largest IDR dataset in open literature to date that can be used for pharmaceutical computational modeling. Eighteen compounds with diverse physicochemical properties were studied in both fasted and fed state simulated intestinal fluids. Dissolution profiles were measured in small-scale experimental assays using compound suspensions or discs. IDR measurements were not solely linked to API solubility in either dissolution media. Multivariate data analysis revealed that IDR strongly depends on compound partitioning into bile salt and phospholipid micelles in the simulated intestinal fluids, a process that in turn is governed by API lipophilicity, hydrophobicity, and ionization.


Sign in / Sign up

Export Citation Format

Share Document