Crystallization and preliminary X-ray diffraction studies of the water-soluble state of the pore-forming toxin sticholysin II from the sea anemoneStichodactyla helianthus

2002 ◽  
Vol 58 (7) ◽  
pp. 1229-1231 ◽  
Author(s):  
José M. Mancheño ◽  
Martín Martínez-Ripoll ◽  
José G. Gavilanes ◽  
Juan A. Hermoso
2020 ◽  
Vol 235 (10) ◽  
pp. 465-475
Author(s):  
Ozge Gungor ◽  
Seda Nur Kertmen Kurtar ◽  
Muhammet Kose

AbstractSeven biguanide derivatives were prepared by the nucleophilic reaction between dicyandiamide and p-substitute aniline derivatives or memantine or adamantine under acidic conditions. The cyclization of the biguanide compounds were also conducted via acetone to give 1,3,5-triazine derivatives. The structures of the synthesized compounds were characterized by analytical methods. The solid state structures of [HL5]Cl, [H2L7]Cl2, [HL1a]Cl and [HL5a]Cl were investigated by X-ray diffraction study. The acetylcholinesterase and α-glucosidase inhibitor properties of the compounds were then evaluated by the spectroscopic method. The compounds were found to show considerable acetylcholinesterase and α-glucosidase inhibitory activities compared to the approved drugs. The cyclization of biguanide derivatives with acetone did not affect inhibition of acetylcholinesterase, yet increased the α-glucosidase inhibition.


2021 ◽  
Vol 71 (5) ◽  
pp. 393-409
Author(s):  
Earle Radha-Rani ◽  
Gadela Venkata-Radha

In the present study, co-crystals (CCs) of Paliperidone (PPD) with coformers like benzoic acid (BA) and P-amino benzoic acid (PABA) were synthesized and characterized to improve the physicochemical properties and dissolution rate. CCs were prepared by the solvent evaporation (SE) technique and were compared with the products formed by neat grinding (NG) and liquid assisted grinding (LAG) in their enhancement of solubility. The formation of CCs was confirmed by the IR spectroscopy, powder X-ray diffraction and thermal analysis methods. The saturation solubility studies indicate that the aqueous solubility of PPD-BA and PPD-PABA CCs was significantly improved to 1.343±0.162mg/ml and 1.964±0.452mg/ml, respectively, in comparison with the PPD solubility of 0.473mg/ml. This increase in solubility is 2.83-and 3.09-fold, respectively. PPD exhibited a poor dissolution of 37.8% in 60min, while the dissolution of the CCs improved tremendously to 96.07% and 89.65% in 60min. CCs of PPD with BA and PABA present a novel approach to overcome the solubility challenges of poorly water-soluble drug PPD.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2009 ◽  
Vol 1207 ◽  
Author(s):  
Steven Rutledge ◽  
Abdiaziz A. Farah ◽  
Jordan Dinglasan ◽  
Darren Anderson ◽  
Anjan Das ◽  
...  

AbstractThe crystallinity of colloidal CdTe nanoparticles has been enhanced post synthesis. This control over the nanoparticles’ properties has been achieved using non-adiabatic thermal processing. The technique preserves the polymer capping and hence introduces no adverse effects on the nanoparticles’ optical properties. The crystallinity is probed primarily through Raman spectroscopy in a hollow core photonic crystal fiber and x-ray diffraction powder studies.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yunsu Lee ◽  
Mingyun Kim ◽  
Zhengxin Chen ◽  
Hanseung Lee ◽  
Seungmin Lim

A chloride-binding capacity is the major factor to mitigate the ingress of chloride into concrete. This paper presents the chloride-binding capacity of Portland cement paste containing synthesized CA2 (CaO·2Al2O3). The CA2 was synthesized in the high-temperature furnace and characterized by X-ray diffraction for inspecting the purity. The synthesized CA2 was substituted for Portland cement by 0%, 5%, and 10% by weight, and the NaCl solution was used as an internal chloride, which is assumed as a total chloride. The chloride-binding capacity of cement paste was calculated from a water-soluble chloride extraction method by the application of the Langmuir isotherm equation. And the hydration products were analyzed using X-ray diffraction and thermogravimetric analysis. We demonstrate that the CA2 increases an AFm phase in the Portland cement system, and the incorporation of CA2 consequently enhances the chloride-binding capacity of cement paste samples.


2018 ◽  
Vol 82 (5) ◽  
pp. 1057-1077 ◽  
Author(s):  
Elena S. Zhitova ◽  
Oleg I. Siidra ◽  
Dmitry I. Belakovsky ◽  
Vladimir V. Shilovskikh ◽  
Anton A. Nuzhdaev ◽  
...  

AbstractAmmoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, is a new voltaite-group mineral. The mineral was discovered at the Severo-Kambalny (North-Kambalny) geothermal field, Kambalny volcanic ridge, Southern Kamchatka, Russia. Ammoniovoltaite forms at ~100°C around geothermal gas/steam vents in association with alunogen, tschermigite and pyrite. Crystals of ammoniovoltaite have euhedral habit, are up to 50 µm in size and grow on alunogen plates. Ammoniovoltaite is black with vitreous lustre, opaque, brittle and water-soluble. Neither cleavage nor parting is found, the fracture is conchoidal. The mineral is isotropic, with the refractive index n = 1.602(2) (589 nm). Infrared spectra contain an absorption band at 1433 cm–1 distinctive for the ammonium ion. The chemical composition is (iron content is given in accordance with Mössbauer data, H2O calculated from a crystal-structure refinement, wt.%): FeO 13.26, Fe2O3 11.58, MgO 2.33, ZnO 0.04, Al2O3 2.74, SO3 47.46, K2O 0.19, CaO 0.11, (NH4)2O 2.96, H2O 16.03, total 96.70. The empirical formula based on S = 12 atoms per formula unit is [(NH4)1.88K0.08Ca0.04]Σ2.00(Fe2+3.74Mg1.17Fe3+0.05Zn0.01)Σ4.97(Fe3+2.89Al0.09)Σ2.98Al1.00(SO4)12.00(H2O)18.00. The crystal structure has been refined to R1 = 0.031 and 0.030 on the basis of 1217 and 1462 unique reflections with I >2σ(I) collected at 100 K and room temperature, respectively. Ammoniovoltaite is the ammonium analogue of voltaite. The mineral is cubic, Fd$\bar{3}$c, a = 27.250(1) Å and V = 20234(3) Å3 (at 100 K); and a = 27.322(1) Å and V = 20396(3) Å3 (at RT), with Z = 16. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.67 (74) (022), 7.90 (56) (222), 5.58 (84) (422), 3.560 (100) (731), 3.418 (100) (008) and 2.8660 (37) (931). A brief review of ammonium minerals from various volcanically active geological environments is given.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Geeta Thota ◽  
P. Srinivas

Grafting of Acrylonitrile (AN) onto water-soluble polymer Gum arabic (GA) was carried out using ceric ammonium sulfate [Ce(IV)] as initiator in the presence and absence of Ag(I) in H2SO4 medium at 313 K. The rate of oxidation (), rate of grafting (), and grafting efficiency (GE) were determined for catalyzed and uncatalyzed grafting and suitable mechanism was proposed to explain the observed results. No homopolymerization in the absence of GA indicates that the polymer obtained is purely a graft copolymer. A probable mechanism involving the formation of Ag(I)-GA adduct followed by its oxidation with Ce(IV) to give Ag(II)-GA adduct, and its decomposition to give initiating radicals is proposed to explain the observed results. The graft polymer was characterized using Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction, and scanning electron microscopy (SEM) considering GA as reference.


2019 ◽  
Vol 956 ◽  
pp. 260-269
Author(s):  
Ke Xuan Shen ◽  
Shi Yong Sun ◽  
Ke Wang ◽  
Biao Biao Ma ◽  
Fa Qin Dong ◽  
...  

Amphiphilic functionalized montmorillonite (MMT) has been employed in hydrophobic compounds delivery systems. In the present study, MMT intercalated by 3-aminopropyl trimethoxysilane (APS) was employed for the delivery of the model compounds of resveratrol (RSV). The structure and surface morphology of APS-MMT were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, and contact angle analysis. The loading and release efficiencies of RSV were also investigated. Our study showed that the aminosilane-modified MMT is promising for use in poorly water-soluble compounds carrier systems owing to their natural and excellent performance.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 449
Author(s):  
Christian Dank ◽  
Richard Wurzer ◽  
Susanne Felsinger ◽  
Ricarda Bugl ◽  
Hanspeter Kählig ◽  
...  

The synthesis of the alkaloid (–)-monophyllidin is described. The molecule is a hybrid of xanthoxyline and (S)-proline, accessible in one-step through a Mannich reaction. In the solid-state, defined structural arrangements with different physical properties are formed. Single crystal X-ray diffraction revealed structures of six distinct polymorphs. In the crystalline state, the alkaloid can host small polar molecules (preferably water), while the (S)-proline moiety is present in the zwitterionic state. Combined with the chelate, which is already present in the xanthoxyline substructure, an ideal disposition for multiple hydrogen bond networks evolve. Therefore, highly water-soluble polymorphs of monophyllidin can form. This structural flexibility explains the many faces of the molecule in terms of structure as well as analytical data. Furthermore, speculations about the biological role of the molecule, with regard to the manifold interactions with water, are presented.


2020 ◽  
Vol 859 ◽  
pp. 139-144
Author(s):  
Yotsanan Weerapol ◽  
Sukannika Tubtimsri

Quercetin has been used for health promotion for instance anti-bacterial, anti-inflammatory, anti-coagulative, antineoplastic and antioxidant. The poorly water-soluble quercetin has been a significant problem of bioavailability for oral administration. The objective of this study was to improve the quercetin solubility by spontaneous emulsion formulation (SEF). SEF was fabricated by dissolved quercetin in mixture of polyoxyl 35 castor oil, diethylene glycol monoethy ether, caprylic/capric glyceride. The solid-SEF was obtained by incorporation with solid carrier adsorbent (magnesium aluminometasilicate). The photon correlation spectroscopy was used to determine the emulsion size of diluted SEF and solid-SEF. The power X-ray diffraction and differential scanning calorimetry were also employed to elucidate the powder of solid-SEF compared with unmodified quercetin. The dissolution profiled at 120 min of unmodified quercetin, SEF and solid-SEF was about 2%, 77% and 89%, respectively.


Sign in / Sign up

Export Citation Format

Share Document