Studies on a Tyr residue critical for the binding of coenzyme and substrate in mouse 3(17)α-hydroxysteroid dehydrogenase (AKR1C21): structure of the Y224D mutant enzyme

2010 ◽  
Vol 66 (2) ◽  
pp. 198-204
Author(s):  
Urmi Dhagat ◽  
Satoshi Endo ◽  
Hiroaki Mamiya ◽  
Akira Hara ◽  
Ossama El-Kabbani

Mouse 3(17)α-hydroxysteroid dehydrogenase (AKR1C21) is the only aldo–keto reductase that catalyzes the stereospecific reduction of 3- and 17-ketosteroids to the corresponding 3(17)α-hydroxysteroids. The Y224D mutation of AKR1C21 reduced theKmvalue for NADP(H) by up to 80-fold and completely reversed the 17α stereospecificity of the enzyme. The crystal structure of the Y224D mutant at 2.3 Å resolution revealed that the mutation resulted in a change in the conformation of the flexible loop B, including the V-shaped groove, which is a unique feature of the active-site architecture of wild-type AKR1C21 and is formed by the side chains of Tyr224 and Trp227. Furthermore, mutations (Y224F and Q222N) of residues involved in forming the safety belt for binding of the coenzyme showed similar alterations in kinetic constants for 3α-hydroxy/3-ketosteroids and 17-hydroxy/ketosteroids compared with the wild type.

2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Henry W. Orton ◽  
Iresha D. Herath ◽  
Ansis Maleckis ◽  
Shereen Jabar ◽  
Monika Szabo ◽  
...  

Abstract. The metallo-β-lactamase IMP-1 features a flexible loop near the active site that assumes different conformations in single crystal structures, which may assist in substrate binding and enzymatic activity. To probe the position of this loop, we labelled the tryptophan residues of IMP-1 with 7-13C-indole and the protein with lanthanoid tags at three different sites. The magnetic susceptibility anisotropy (Δχ) tensors were determined by measuring pseudocontact shifts (PCSs) of backbone amide protons. The Δχ tensors were subsequently used to identify the atomic coordinates of the tryptophan side chains in the protein. The PCSs were sufficient to determine the location of Trp28, which is in the active site loop targeted by our experiments, with high accuracy. Its average atomic coordinates showed barely significant changes in response to the inhibitor captopril. It was found that localisation spaces could be defined with better accuracy by including only the PCSs of a single paramagnetic lanthanoid ion for each tag and tagging site. The effect was attributed to the shallow angle with which PCS isosurfaces tend to intersect if generated by tags and tagging sites that are identical except for the paramagnetic lanthanoid ion.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 19-19 ◽  
Author(s):  
Wenman Wu ◽  
Heinrich Roder ◽  
Peter N. Walsh

Abstract Abstract 19 Coagulation factor XI (FXI) is a uniquely dimeric coagulation protein, which in its activated form (FXIa) activates FIX to FIXa. We have previously shown that the dimeric structure of FXI is essential for normal autoactivation and activation by thrombin and FXIIa, but not for the expression of enzymatic activity against FIX (Wu W, et al J. Biol. Chem. 283:18655-18664, 2008). A comparison of three separate structures of FXI/XIa from our laboratory (i.e., the crystal structure of the catalytic domain of FXIa in complex with the kunitz protease inhibitor domain of protease nexin-2; the crystal structure of full-length, dimeric FXI; and the NMR structure of the FXI A4 domain) predicts a major conformational change accompanying the conversion of FXI to FXIa. We now show that when FXI binds to the negatively charged polymer, dextran sulfate and is autoactivated to generate FXIa, changes of intrinsic fluorescence are observed, i.e, a decrease in fluorescence intensity and a red shift of emission wavelength, which also suggests that a conformational change accompanies FXI activation. To investigate the mechanism of FXI zymogen activation and the allosteric transition accompanying the conversion of FXI to FXIa, which exposes binding sites for FXIa ligands, we have carried out fluorescence resonance energy transfer (FRET) studies to characterize the conformational changes accompanying zymogen activation. Using a sensitive free thiol quantitation assay, we confirmed the presence of a single free cysteine residue (Cys11) per subunit of recombinant FXI, which was quantitatively labeled with the thiol reactive fluorescence dye IAEDANS (5-({2-[(iodoacetyl)amino]ethyl}amino)naphthalene-1-sulfonic acid). Fluorescence excitation of AEDANS-labeled FXI at 280 nm shows a prominent dansyl emission peak (∼450 nm) in addition to the Trp emission peak (∼325 nm) indicative of efficient FRET from Trp donors to the AEDANS acceptor. Controls using a C11S mutant of FXI showed ∼10-fold lower levels of AEDANS labeling, confirming that Cys11 is the predominant labeling site. Autoactivation of FXI in the presence of dextran sulfate results in a major decrease in donor emission, but has little effect on acceptor emission. This indicates that, for wild-type FXI, FRET is dominated by transfer within the A1 domain originating from Trp55, which is located at a distance of 18 Å from Cys11, far closer than any other tryptophan. The changes in Trp emission, which are similar in the presence and abence of AEDANS, allow us to follow the kinetics of zymogen activation. The S557A active-site mutant of FXI, which cannot undergo autoactivation, showed no fluorescence changes upon addition of dextran sulfate, confirming that the observed decrease in Trp fluorescence is due to formation of active FXIa enzyme. In an effort to observe specific inter-domain FRET, we prepared an AEDANS labeled W55H mutant of FXI, which eliminates the Trp donor in the A1 domain that dominates energy transfer in wild-type FXI. Our data show that autoactivation of the W55H mutant is accompanied by a significant increase in AEDANS emission that can be attributed to the movement of the labeled Cys11 (in A1) relative to Trp228 in the A3 domain of the opposite dimer subunit. In the crystal structure of FXI, the distance for this donor-acceptor pair is 29 Å (compared to a distance of 40 Å for the second closest Trp, Trp407 in the catalytic domain), making it a sensitive and specific FRET probe for monitoring changes in domain arrangement associated with enzyme activation and ligand interactions. A comparison of the FXI crystal structure with our model of FXIa showed that the distance between the active site serines (Ser557) of each catalytic triad is shortened from ∼118 Å in the zymogen to 40–75 Å in the enzyme. Since the distance between the two scissile bonds of each subunit of FXI is also ∼75 Å, we propose that during autoactivation, either the active site of each catalytic domain of FXIa is positioned to cleave the Arg369-Ile370 bond of the opposite subunit (intersubunit transactivation) or a FXIa dimer positions its two active sites adjacent to the two scissile bonds of a separate FXI dimer (intermolecular activation). These studies support a model in which the autoactivating transition from zymogen to enzyme is accompanied by the movement of each catalytic domain of the dimer to facilitate efficient autoactivation of FXI. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 116 ◽  
pp. 451-462 ◽  
Author(s):  
Manju Narwal ◽  
Harvijay Singh ◽  
Shivendra Pratap ◽  
Anjali Malik ◽  
Richard J. Kuhn ◽  
...  

1993 ◽  
Vol 268 (10) ◽  
pp. 6932-6938
Author(s):  
M.B. Bhatia ◽  
S. Futaki ◽  
H. Ueno ◽  
J.M. Manning ◽  
D. Ringe ◽  
...  

2005 ◽  
Vol 280 (16) ◽  
pp. 15800-15808 ◽  
Author(s):  
Ante Tocilj ◽  
Joseph D. Schrag ◽  
Yunge Li ◽  
Barbara L. Schneider ◽  
Larry Reitzer ◽  
...  

The ammonia-producing arginine succinyltransferase pathway is the major pathway inEscherichia coliand related bacteria for arginine catabolism as a sole nitrogen source. This pathway consists of five steps, each catalyzed by a distinct enzyme. Here we report the crystal structure ofN-succinylarginine dihydrolase AstB, the second enzyme of the arginine succinyltransferase pathway, providing the first structural insight into enzymes from this pathway. The enzyme exhibits a pseudo 5-fold symmetric α/β propeller fold of circularly arranged ββαβ modules enclosing the active site. The crystal structure indicates clearly that this enzyme belongs to the amidinotransferase (AT) superfamily and that the active site contains a Cys–His-Glu triad characteristic of the AT superfamily. Structures of the complexes of AstB with the reaction product and a C365S mutant with bound theN-succinylarginine substrate suggest a catalytic mechanism that consists of two cycles of hydrolysis and ammonia release, with each cycle utilizing a mechanism similar to that proposed for arginine deiminases. Like other members of the AT superfamily of enzymes, AstB possesses a flexible loop that is disordered in the absence of substrate and assumes an ordered conformation upon substrate binding, shielding the ligand from the bulk solvent, thereby controlling substrate access and product release.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11253-11267
Author(s):  
Anil R. Mhashal ◽  
Adrian Romero-Rivera ◽  
Lisa S. Mydy ◽  
Judith R. Cristobal ◽  
Andrew M. Gulick ◽  
...  

2015 ◽  
Vol 71 (12) ◽  
pp. 1531-1539 ◽  
Author(s):  
Rosario Recacha ◽  
Janis Leitans ◽  
Inara Akopjana ◽  
Lilija Aprupe ◽  
Peteris Trapencieris ◽  
...  

Plasmepsin II (PMII) is one of the ten plasmepsins (PMs) identified in the genome ofPlasmodium falciparum, the causative agent of the most severe and deadliest form of malaria. Owing to the emergence ofP. falciparumstrains that are resistant to current antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is a constant pressure to find new and lasting chemotherapeutic drug therapies. Previously, the crystal structure of PMII in complex with NU655, a potent antimalarial hydroxyethylamine-based inhibitor, and the design of new compounds based on it have been reported. In the current study, two of these newly designed hydroxyethylamine-based inhibitors, PG418 and PG394, were cocrystallized with PMII and their structures were solved, analyzed and compared with that of the PMII–NU655 complex. Structural analysis of the PMII–PG418 complex revealed that the flap loop can adopt a fully closed conformation, stabilized by interactions with the inhibitor, and a fully open conformation, causing an overall expansion in the active-site cavity, which in turn causes unstable binding of the inhibitor. PG418 also stabilizes the flexible loop Gln275–Met286 of another monomer in the asymmetric unit of PMII, which is disordered in the PMII–NU655 complex structure. The crystal structure of PMII in complex with the inhibitor PG418 demonstrates the conformational flexibility of the active-site cavity of the plasmepsins. The interactions of the different moieties in the P1′ position of PG418 and PG394 with Thr217 have to be taken into account in the design of new potent plasmepsin inhibitors.


1994 ◽  
Vol 300 (2) ◽  
pp. 491-499 ◽  
Author(s):  
T J Nobbs ◽  
A Cortés ◽  
J L Gelpi ◽  
J J Holbrook ◽  
T Atkinson ◽  
...  

The X-ray structure of lactate dehydrogenase (LDH) shows the side-chain carboxylate group of Asp-143 to be buried in the hydrophobic interior of the enzyme, where it makes hydrogen-bonding interactions with both the side-chain hydroxyl group of Ser-273 and the main-chain amide group of His-195. This is an unusual environment for a carboxylate side-chain as hydrogen bonding normally occurs with water molecules at the surface of the protein. A charged hydrogen-bonding interaction in the interior of a protein would be expected to be much stronger than a similar interaction on the solvent-exposed exterior. In this respect the side-chain carboxylate group of Asp-143 appears to be important for maintaining tertiary structure by providing a common linkage point between three discontinuous elements of the secondary structure, alpha 1F, beta K and the beta-turn joining beta G and beta H. The contribution of the Asp-143 side-chain to the structure and function of Bacillus stearothermophilus LDH was assessed by creating a mutant enzyme containing Asn-143. The decreased thermal stability of both unactivated and fructose-1,6-diphosphate (Fru-1,6-P2)-activated forms of the mutant enzyme support a structural role for Asp-143. Furthermore, the difference in stability of the wild-type and mutant enzymes in guanidinium chloride suggested that the carboxylate group of Asp-143 contributes at least 22 kJ/mol to the conformational stability of the wild-type enzyme. However, there was no alteration in the amount of accessible tryptophan fluorescence in the mutant enzyme, indicating that the mutation caused a structural weakness rather than a gross conformational change. Comparison of the wild-type and mutant enzyme steady-state parameters for various 2-keto acid substrates showed the mutation to have a general effect on catalysis, with an average difference in binding energy of 11 kJ/mol for the transition-state complexes. The different effects of pH and Fru-1,6-P2 on the wild-type and mutant enzymes also confirmed a perturbation of the catalytic centre in the mutant enzyme. As the side-chain of Asp-143 is not sufficiently close to the active site to be directly involved in catalysis or substrate binding it is proposed that the effects on catalysis shown by the mutant enzyme are induced either by a structural change or by charge imbalance at the active site.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Author(s):  
Yashraj S. Kulkarni ◽  
Tina L. Amyes ◽  
John Richard ◽  
Shina Caroline Lynn Kamerlin

Manuscript and supporting information outlining an analysis of an extended Brønsted relationship obtained from empirical valence bond simulations of substrate deprotonation catalyzed by wild-type and mutant variants of triosephosphate isomerase.


Sign in / Sign up

Export Citation Format

Share Document