Medical Applications with Synchrotron Radiation in Japan

1998 ◽  
Vol 5 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Tohoru Takeda ◽  
Yuji Itai ◽  
Kazuyuki Hyodo ◽  
Masami Ando ◽  
Takao Akatsuka ◽  
...  

In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima.

2021 ◽  
Vol 20 ◽  
pp. 153303382110101
Author(s):  
Thet-Thet Lwin ◽  
Akio Yoneyama ◽  
Hiroko Maruyama ◽  
Tohoru Takeda

Phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer provides high sensitivity and high spatial resolution, and it has the ability to depict the fine morphological structures of biological soft tissues, including tumors. In this study, we quantitatively compared phase-contrast synchrotron-based X-ray computed tomography images and images of histopathological hematoxylin-eosin-stained sections of spontaneously occurring rat testicular tumors that contained different types of cells. The absolute densities measured on the phase-contrast synchrotron-based X-ray computed tomography images correlated well with the densities of the nuclear chromatin in the histological images, thereby demonstrating the ability of phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer to reliably identify the characteristics of cancer cells within solid soft tissue tumors. In addition, 3-dimensional synchrotron-based phase-contrast X-ray computed tomography enables screening for different structures within tumors, such as solid, cystic, and fibrous tissues, and blood clots, from any direction and with a spatial resolution down to 26 μm. Thus, phase-contrast synchrotron-based X-ray imaging using an X-ray interferometer shows potential for being useful in preclinical cancer research by providing the ability to depict the characteristics of tumor cells and by offering 3-dimensional information capabilities.


Author(s):  
Atsushi Momose ◽  
Tohoru Takeda ◽  
Yuji Itai ◽  
Akio Yoneyama ◽  
Keiichi Hirano

2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


2006 ◽  
Author(s):  
Jin Wu ◽  
Tohoru Takeda ◽  
Thet Thet Lwin ◽  
Naoki Sunaguchi ◽  
Tadanori Fukami ◽  
...  

1999 ◽  
Vol 38 (Part 2, No. 4B) ◽  
pp. L470-L472 ◽  
Author(s):  
Yasushi Kagoshima ◽  
Yoshiyuki Tsusaka ◽  
Kazushi Yokoyama ◽  
Kengo Takai ◽  
Shingo Takeda ◽  
...  

2019 ◽  
Vol 75 (11) ◽  
pp. 947-958 ◽  
Author(s):  
Maxim Polikarpov ◽  
Gleb Bourenkov ◽  
Irina Snigireva ◽  
Anatoly Snigirev ◽  
Sophie Zimmermann ◽  
...  

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.


Sign in / Sign up

Export Citation Format

Share Document