Preliminary comparison of grating-based and in-line phase contrast X-ray imaging with synchrotron radiation for mouse kidney at TOMCAT

2013 ◽  
Vol 8 (06) ◽  
pp. C06003-C06003 ◽  
Author(s):  
J Sun ◽  
P Liu ◽  
S Irvine ◽  
B Pinzer ◽  
M Stampanoni ◽  
...  
1999 ◽  
Vol 38 (Part 2, No. 4B) ◽  
pp. L470-L472 ◽  
Author(s):  
Yasushi Kagoshima ◽  
Yoshiyuki Tsusaka ◽  
Kazushi Yokoyama ◽  
Kengo Takai ◽  
Shingo Takeda ◽  
...  

2019 ◽  
Vol 75 (11) ◽  
pp. 947-958 ◽  
Author(s):  
Maxim Polikarpov ◽  
Gleb Bourenkov ◽  
Irina Snigireva ◽  
Anatoly Snigirev ◽  
Sophie Zimmermann ◽  
...  

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.


1998 ◽  
Vol 5 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Tohoru Takeda ◽  
Yuji Itai ◽  
Kazuyuki Hyodo ◽  
Masami Ando ◽  
Takao Akatsuka ◽  
...  

In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima.


2010 ◽  
Vol 61 (5) ◽  
pp. 287-290 ◽  
Author(s):  
Zdenko Zápražný ◽  
Dušan Korytár ◽  
František Dubecký ◽  
Vladimír Áč ◽  
Zbigniew Stachura ◽  
...  

Experience with Imaging by Using of Microfocus X-Ray SourceIn this paper we present the current work and experience with using microfocus x-ray generator and commercial CCD camera for x-ray imaging purpose. There is a need in laboratories for the development of imaging methods approaching synchrotron radiation sources, where the brilliance of radiation is on very high-level. Generally, there is no continuous access to synchrotron facilities. Several synchrotron radiation laboratories allocate the access via a proposal system. Thus the time for synchrotron radiation experiments seldom exceeds more than 1-2 weeks per year, which restricts its application to a few selected experiments. Even in future, the routine characterization of samples will be performed mainly at the experimenters home laboratories [10]. In this contribution we show that with the present set-up it is possible to achieve the spatial resolution down to μm and with the appropriate geometry a phase contrast images are observable.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


2021 ◽  
pp. 1-7
Author(s):  
Brian K. Tanner ◽  
Patrick J. McNally ◽  
Andreas N. Danilewsky

X-ray diffraction imaging (XRDI) (topography) measurements of silicon die warpage within fully packaged commercial quad-flat no-lead devices are described. Using synchrotron radiation, it has been shown that the tilt of the lattice planes in the Analog Devices AD9253 die initially falls, but after 100 °C, it rises again. The twist across the die wafer falls linearly with an increase in temperature. At 200 °C, the tilt varies approximately linearly with position, that is, displacement varies quadratically along the die. The warpage is approximately reversible on cooling, suggesting that it has a simple paraboloidal form prior to encapsulation; the complex tilt and twisting result from the polymer setting process. Feasibility studies are reported, which demonstrate that a divergent beam and quasi-monochromatic radiation from a sealed X-ray tube can be used to perform warpage measurements by XRDI in the laboratory. Existing tools have limitations because of the geometry of the X-ray optics, resulting in applicability only to simple warpage structures. The necessary modifications required for use in situations of complex warpage, for example, in multiple die interconnected packages are specified.


Sign in / Sign up

Export Citation Format

Share Document