Phase-Contrast X-Ray Imaging Using Both Vertically and Horizontally Expanded Synchrotron Radiation X-Rays with Asymmetric Bragg Reflection

1999 ◽  
Vol 38 (Part 2, No. 4B) ◽  
pp. L470-L472 ◽  
Author(s):  
Yasushi Kagoshima ◽  
Yoshiyuki Tsusaka ◽  
Kazushi Yokoyama ◽  
Kengo Takai ◽  
Shingo Takeda ◽  
...  
1988 ◽  
Vol 143 ◽  
Author(s):  
D. M. Shinozaki

AbstractA review of recent advances in soft X-ray imaging using synchrotron radiation is given.


2019 ◽  
Vol 75 (11) ◽  
pp. 947-958 ◽  
Author(s):  
Maxim Polikarpov ◽  
Gleb Bourenkov ◽  
Irina Snigireva ◽  
Anatoly Snigirev ◽  
Sophie Zimmermann ◽  
...  

For the extraction of the best possible X-ray diffraction data from macromolecular crystals, accurate positioning of the crystals with respect to the X-ray beam is crucial. In addition, information about the shape and internal defects of crystals allows the optimization of data-collection strategies. Here, it is demonstrated that the X-ray beam available on the macromolecular crystallography beamline P14 at the high-brilliance synchrotron-radiation source PETRA III at DESY, Hamburg, Germany can be used for high-energy phase-contrast microtomography of protein crystals mounted in an optically opaque lipidic cubic phase matrix. Three-dimensional tomograms have been obtained at X-ray doses that are substantially smaller and on time scales that are substantially shorter than those used for diffraction-scanning approaches that display protein crystals at micrometre resolution. Adding a compound refractive lens as an objective to the imaging setup, two-dimensional imaging at sub-micrometre resolution has been achieved. All experiments were performed on a standard macromolecular crystallography beamline and are compatible with standard diffraction data-collection workflows and apparatus. Phase-contrast X-ray imaging of macromolecular crystals could find wide application at existing and upcoming low-emittance synchrotron-radiation sources.


1998 ◽  
Vol 5 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Tohoru Takeda ◽  
Yuji Itai ◽  
Kazuyuki Hyodo ◽  
Masami Ando ◽  
Takao Akatsuka ◽  
...  

In Japan, various medical applications of synchrotron X-ray imaging, such as angiography, monochromatic X-ray computed tomography (CT), radiography and radiation therapy, are being developed. In particular, coronary arteriography (CAG) is quite an important clinical application of synchrotron radiation. Using a two-dimensional imaging method, the first human intravenous CAG was carried out at KEK in May 1996; however, further improvements of image quality are required in clinical practice. On the other hand, two-dimensional aortographic CAG revealed canine coronary arteries as clearly as those on selective CAG, and coronary arteries less than 0.2 mm in diameter. Among applications of synchrotron radiation to X-ray CT, phase-contrast X-ray CT and fluorescent X-ray CT are expected to be very interesting future applications of synchrotron radiation. For actual clinical applications of synchrotron radiation, a medical beamline and a laboratory are now being constructed at SPring-8 in Harima.


2010 ◽  
Vol 61 (5) ◽  
pp. 287-290 ◽  
Author(s):  
Zdenko Zápražný ◽  
Dušan Korytár ◽  
František Dubecký ◽  
Vladimír Áč ◽  
Zbigniew Stachura ◽  
...  

Experience with Imaging by Using of Microfocus X-Ray SourceIn this paper we present the current work and experience with using microfocus x-ray generator and commercial CCD camera for x-ray imaging purpose. There is a need in laboratories for the development of imaging methods approaching synchrotron radiation sources, where the brilliance of radiation is on very high-level. Generally, there is no continuous access to synchrotron facilities. Several synchrotron radiation laboratories allocate the access via a proposal system. Thus the time for synchrotron radiation experiments seldom exceeds more than 1-2 weeks per year, which restricts its application to a few selected experiments. Even in future, the routine characterization of samples will be performed mainly at the experimenters home laboratories [10]. In this contribution we show that with the present set-up it is possible to achieve the spatial resolution down to μm and with the appropriate geometry a phase contrast images are observable.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Sign in / Sign up

Export Citation Format

Share Document