Simultaneous determination of several crystal structures from powder mixtures: the combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods

2014 ◽  
Vol 47 (2) ◽  
pp. 659-667 ◽  
Author(s):  
Martin Schreyer ◽  
Liangfeng Guo ◽  
Satyanarayana Thirunahari ◽  
Feng Gao ◽  
Marc Garland

Crystal structure determination is the key to a detailed understanding of crystalline materials and their properties. This requires either single crystals or high-quality single-phase powder X-ray diffraction data. The present contribution demonstrates a novel method to reconstruct single-phase powder diffraction data from diffraction patterns of mixtures of several components and subsequently to determine the individual crystal structures. The new method does not require recourse to any database of known materials but relies purely on numerical separation of the mixture data into individual component diffractograms. The resulting diffractograms can subsequently be treated like single-phase powder diffraction data,i.e.indexing, structure solution and Rietveld refinement. This development opens up a host of new opportunities in materials science and related areas. For example, crystal structures can now be determined at much earlier stages when only impure samples or polymorphic mixtures are available.

Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


2002 ◽  
Vol 17 (2) ◽  
pp. 153-153
Author(s):  
Silvia Cuffini ◽  
James Kaduk

The workshop was aimed at demonstrating the uses and methods of analysis of powder diffraction data collected from X-ray sources. There were around 35 participants in the workshop from Chile, Uruguay, Brazil, and Argentine. The participants came from inorganic and organic chemistry, physics, mineralogy and materials science backgrounds, and additionally we had attendees from a local cement company.


1996 ◽  
Vol 11 (1) ◽  
pp. 26-27 ◽  
Author(s):  
Irena Georgieva ◽  
Ivan Ivanov ◽  
Ognyan Petrov

A new compound—Ba3MnSi2O8 in the system BaO–MnO–SiO2 was synthesized and studied by powder X-ray diffraction. The compound is hexagonal, space group—P6/mmm, a=5.67077 Å, c=7.30529 Å, Z=1, Dx=5.353. The obtained powder X-ray diffractometry (XRD) data were interpreted by the Powder Data Interpretation Package.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


2015 ◽  
Vol 30 (3) ◽  
pp. 293-293 ◽  
Author(s):  
Qing Wang ◽  
Ying Xiao ◽  
Jia Wei He ◽  
Hui Li

X-ray powder diffraction data for 3,3-dichloro-1-(4-nitrophenyl)-2-piperidinone, C11H10Cl2N2O3, are reported [a = 11.088(4) Å, b = 11.594(5) Å, c = 12.689(3) Å, α = 118.456(1)°, β = 100.320(3)°, γ = 107.763(3)°, V = 1259.27 Å3, Z = 4 and space group P-1 ]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.


2012 ◽  
Vol 194 ◽  
pp. 5-9 ◽  
Author(s):  
Yuriy Verbovytskyy ◽  
Antonio Pereira Gonçalves

Seven new ternary RZn1+xGa3-x (R = Ce, Pr, Nd, Sm, Ho and Er) and R5Zn2Ga17 (R = Ce) phases are synthesized for the first time. Their crystal structures are solved on basis of X-ray powder diffraction data. The above mentioned compounds belong to the BaAl4 (space group I4/mmm) and Rb5Hg19 (space group I4/m) structure types. Details of the structure of the Ce5Zn2Ga17 compound and relationship with RZn2-xGa2+x (BaAl4 type) and R3Zn8-xGa3+x (La3Al11 type) are briefly discussed.


1997 ◽  
Vol 53 (6) ◽  
pp. 861-869 ◽  
Author(s):  
C. D. Ling ◽  
J. G. Thompson ◽  
S. Schmid ◽  
D. J. Cookson ◽  
R. L. Withers

The structures of the layered intergrowth phases SbIIISb^{\rm V}_xAl-xTiO6 (x \simeq 0, A = Ta, Nb) have been refined by the Rietveld method, using X-ray diffraction data obtained using a synchrotron source. The starting models for these structures were derived from those of Sb^{\rm III}_3Sb^{\rm V}_xA 3−xTiO14 (x = 1.26, A = Ta and x = 0.89, A = Nb), previously solved by single-crystal X-ray diffraction. There were no significant differences between the derived models and the final structures, validating the approach used to obtain the models and confirming that the n = 1 and n = 3 members of the family, Sb^{\rm III}_nSb^{\rm V}_xA n−xTiO4n+2 are part of a structurally homologous series.


2008 ◽  
Vol 23 (4) ◽  
pp. 356-359 ◽  
Author(s):  
B. Grushko ◽  
D. Pavlyuchkov

Ternary Al–Cu–Ir phases, isostructural to the Al–Cu–Rh ω and C2 phases, were found to be around the Al70Cu20Ir10 and Al60Cu15Ir25 compositions, respectively. Using powder X-ray diffraction, the former was found to have a tetragonal structure (space group P4/mnc) with a=6.4142(9) Å and c=14.842(4) Å, and the latter has a cubic structure (space group Fm3) with a=15.3928(6) Å.


2010 ◽  
Vol 163 ◽  
pp. 173-176
Author(s):  
Lucjan Pająk ◽  
E. Olszewska ◽  
Stanislaw Pikus ◽  
Grzegorz Dercz ◽  
Józef Rasek

In the present work X-ray studies were performed on annealed Fe78Nb2B20 amorphous alloy prepared by melt-spinning technique. All the samples were annealed in vacuum for 1 hour at temperatures up to 800°C. For the studied alloy -Fe and Fe2B are the stable, crystalline phases. The -Fe crystallized as the first crystalline phase in the sample annealed at 350°C. On the other hand, metastable Fe3B phase appeared to be stable during annealing in 425-800°C temperature range. The best fitting of the experimental X-ray data to as jet available ICDD files was obtained for Ni3P type structure (39-1315 – S.G.: I (82)). New, experimental powder diffraction data for metastable Fe3B phase prepared according to ICDD standards were elaborated for the sample annealed at 600°C. For this sample the best agreement between the calculated values of lattice constants and positions of experimental diffraction lines was obtained. The X-ray data were collected using X-Pert Philips diffractometer equipped with curved graphite monochromator on diffracted beam. The Treor program was applied for the analysis of X-ray diffraction data.


Sign in / Sign up

Export Citation Format

Share Document