scholarly journals Inception and movement of a `subgrain boundary precursor' in ice under an applied stress, observed by X-ray synchrotron radiation Bragg imaging

2015 ◽  
Vol 48 (3) ◽  
pp. 672-678 ◽  
Author(s):  
A. Philip ◽  
L. Capolo ◽  
J. Meyssonnier ◽  
J. Baruchel

Basal slip of dislocations, the easiest deformation mechanism of ice crystals, does not allow a response to any strain state. The first steps of another mechanism, with a moving subgrain boundary precursor region, which permits accommodating the effect of an applied load, is investigated on an ice single crystal, mainly using synchrotron radiation Bragg diffraction imaging. During this process, the evolution of the local integrated intensity shows that there is both a general multiplication of dislocations within the crystal and a movement of basal dislocations towards the surface. The `subgrain boundary precursor' region evolves towards a classical grain boundary when further deformed.

2021 ◽  
Vol 92 (6) ◽  
pp. 063506
Author(s):  
N. R. Pereira ◽  
A. T. Macrander ◽  
E. Kasman ◽  
X.-R. Huang ◽  
E. O. Baronova

2021 ◽  
pp. 1-7
Author(s):  
Brian K. Tanner ◽  
Patrick J. McNally ◽  
Andreas N. Danilewsky

X-ray diffraction imaging (XRDI) (topography) measurements of silicon die warpage within fully packaged commercial quad-flat no-lead devices are described. Using synchrotron radiation, it has been shown that the tilt of the lattice planes in the Analog Devices AD9253 die initially falls, but after 100 °C, it rises again. The twist across the die wafer falls linearly with an increase in temperature. At 200 °C, the tilt varies approximately linearly with position, that is, displacement varies quadratically along the die. The warpage is approximately reversible on cooling, suggesting that it has a simple paraboloidal form prior to encapsulation; the complex tilt and twisting result from the polymer setting process. Feasibility studies are reported, which demonstrate that a divergent beam and quasi-monochromatic radiation from a sealed X-ray tube can be used to perform warpage measurements by XRDI in the laboratory. Existing tools have limitations because of the geometry of the X-ray optics, resulting in applicability only to simple warpage structures. The necessary modifications required for use in situations of complex warpage, for example, in multiple die interconnected packages are specified.


2000 ◽  
Vol 33 (4) ◽  
pp. 1051-1058
Author(s):  
Ioanna Matsouli ◽  
Vladimir V. Kvardakov ◽  
José Baruchel

Ultrasonic standing waves, excited in FeBO3(111) crystal plates through magneto-elastic coupling, were visualized using monochromatic Bragg diffraction imaging (topography) with synchrotron radiation. The images depend strongly on whether diffraction by the sample occurs in the same plane as in the double-crystal monochromator, or in the perpendicular plane. The observations are explained by taking into account (a) the strong spatial dispersion which prevails because of the small effective divergence (angular size of the source as seen from a point in the specimen), which is less than one microradian in this experiment, and (b) the sample vibration and curvature.


2011 ◽  
Vol 31 (4) ◽  
pp. 0418001
Author(s):  
谭兴兴 Tan Xingxing ◽  
刘海岗 Liu Haigang ◽  
郭智 Guo Zhi ◽  
吴衍青 Wu Yanqing ◽  
许子健 Xu Zijian ◽  
...  

1998 ◽  
Vol 4 (S2) ◽  
pp. 376-377
Author(s):  
P. Cloetens ◽  
J. Baruchel ◽  
J.P. Guigay ◽  
W. Ludwig ◽  
L. Mancini ◽  
...  

X-ray imaging started over a century ago. For several decades its only form was absorption radiography, in which contrast is due to local variations in beam attenuation. About forty years ago, a new form of X-ray imagery, Bragg-diffraction imaging or X-ray topography, developed into practical use. It directly reveals crystal defects in the bulk of large single crystals, and paved the way to microelectronics by leading to the growth of large, practically perfect, crystals. The advent of third-generation synchrotron radiation sources of X-rays such as ESRF and APS is now making possible, through the coherence of the X-ray beams, a novel form of radiography, in which contrast arises from phase variations across the transmitted beam, associated with optical path length differences, through Fresnel diffraction. Phase radiography and its three-dimensional companion, X-ray phase tomography, are providing new information on the mechanics of composites as well as on biological materials.


IUCrJ ◽  
2014 ◽  
Vol 1 (5) ◽  
pp. 267-280 ◽  
Author(s):  
Mads R. V. Jørgensen ◽  
Venkatesha R. Hathwar ◽  
Niels Bindzus ◽  
Nanna Wahlberg ◽  
Yu-Sheng Chen ◽  
...  

Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined.


2019 ◽  
Vol 116 (10) ◽  
pp. 4018-4024 ◽  
Author(s):  
Yuan Gao ◽  
Ross Harder ◽  
Stephen H. Southworth ◽  
Jeffrey R. Guest ◽  
Xiaojing Huang ◽  
...  

Optical trapping has been implemented in many areas of physics and biology as a noncontact sample manipulation technique to study the structure and dynamics of nano- and mesoscale objects. It provides a unique approach for manipulating microscopic objects without inducing undesired changes in structure. Combining optical trapping with hard X-ray microscopy techniques, such as coherent diffraction imaging and crystallography, provides a nonperturbing environment where electronic and structural dynamics of an individual particle in solution can be followed in situ. It was previously shown that optical trapping allows the manipulation of micrometer-sized objects for X-ray fluorescence imaging. However, questions remain over the ability of optical trapping to position objects for X-ray diffraction measurements, which have stringent requirements for angular stability. Our work demonstrates that dynamic holographic optical tweezers are capable of manipulating single micrometer-scale anisotropic particles in a microfluidic environment with the precision and stability required for X-ray Bragg diffraction experiments—thus functioning as an “optical goniometer.” The methodology can be extended to a variety of X-ray experiments and the Bragg coherent diffractive imaging of individual particles in solution, as demonstrated here, will be markedly enhanced with the advent of brighter, coherent X-ray sources.


1998 ◽  
Vol 31 (5) ◽  
pp. 726-732
Author(s):  
C. Medrano ◽  
F. Heyroth ◽  
M. Schlenker ◽  
J. Baruchel ◽  
J. Espeso

The X-ray diffraction topographic imaging process for ferrimagnetic domains in magnetite Fe3O4at room temperature is investigated, in two- and three-beam cases, for incident synchrotron radiation beams differing in angular divergence and energy spread. In the usual two-beam configuration, domain or wall contrast is obtained from the difference in Bragg conditions, or from the slight difference in the direction of the beams diffracted by neighbouring domains, revealed by the large crystal-to-film distance that can be used at a third-generation synchrotron radiation facility. A three-beamUmweganregungcase involving the weak 171 and the strong 131 reflections shows unusual domain contrast on the 171 topographs, even on images involving energy or angle integration; this contrast is particularly evident on white-beam topographs. The high angular sensitivity this implies is associated with the difference in dispersion relation between the two reflections.


2017 ◽  
Vol 50 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Thu Nhi Tran Thi ◽  
J. Morse ◽  
D. Caliste ◽  
B. Fernandez ◽  
D. Eon ◽  
...  

Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples.


Sign in / Sign up

Export Citation Format

Share Document