Ind_X: program for indexing single-crystal diffraction patterns

2017 ◽  
Vol 50 (2) ◽  
pp. 647-650 ◽  
Author(s):  
A. Morawiec

Indexing is an essential step in analysis of diffraction patterns. Diffraction of monochromatic radiation by a single crystal provides approximate positions of some nodes of the reciprocal lattice of the crystal, and the indexing problem lies in determining a lattice matching these positions. Ind_X is a program for indexing diffraction data given in the form of several approximate reciprocal lattice nodes. The applied method relies on testing potential volumes of the primitive cell of the reciprocal lattice. A subset of reciprocal lattice vectors supporting a given test volume is used to obtain tentative lattice bases. These are bases of low-index superlattices of lattices based on triplets of supporting vectors. The Ind_X solution of the indexing problem consists of a list of best bases. The method turns out to be quite robust to data inaccuracies and spurious reflections. The program is relatively versatile, easily operated and freely accessible.

2013 ◽  
Vol 46 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Hui Li ◽  
Xiaodong Li ◽  
Meng He ◽  
Yanchun Li ◽  
Jing Liu ◽  
...  

High-pressure single-crystal diffraction experiments often suffer from the crushing of single crystals due to the application of high pressure. Consequently, only diffraction data resulting from several particles in random orientations is available, which cannot be routinely indexed by commonly used methods designed for single-crystal data. A protocol is proposed to index such diffraction data. The techniques of powder pattern indexing are first used to propose the possible lattice parameters, and then a genetic algorithm is applied to determine the orientation of the reciprocal lattice for each of the particles. This protocol has been verified experimentally.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Adam Morawiec

There is a growing interest in ab initio indexing of electron backscatter diffraction (EBSD) patterns. The methods of solving the problem are presented as innovative. The purpose of this note is to point out that ab initio EBSD indexing belongs to the field of indexing single-crystal diffraction data, and it is solved on the same principles as indexing of patterns of other types. It is shown that reasonably accurate EBSD-based data can be indexed by programs designed for X-ray data.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1449-C1449
Author(s):  
Tao Zhang ◽  
Shifeng Jin ◽  
Yuanxin Gu ◽  
Yao He ◽  
Haifu Fan

With the serial femtosecond crystallography (SFX) [1] using hard X-ray free-electron laser as light source, it is possible to obtained three-dimensional single-crystal diffraction data from powder samples consisting of submicron crystal grains. This offers two advantages. First, complicated crystal structures far beyond the ability of powder X-ray diffraction analysis now can be solved easily; second, mixtures of two or more crystalline components can be examined in a single experiment. The percentage of each component can be determined accurately and the crystal structure of them can be solved readily. Simulating calculations were performed with a mixture of two different kinds of zeolites. The program suite CrystFEL [2] was used for simulating SFX diffraction patterns, diffraction indexing and Monte-Carlo integration of diffraction intensities. The program suite SHELX [3] was used for structure determination. Satisfactory results have been obtained and will be discussed in detail.


2012 ◽  
Vol 45 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Victor Krayzman ◽  
Igor Levin

Combined refinements of local atomic structure that involve simultaneous fitting of powder-averaged and single-crystal data were implemented as an extension to the publicly availableRMCProfilesoftware. The refinements employ the reverse Monte Carlo method to fit neutron total scattering data, the neutron Bragg profile, extended X-ray absorption fine structure (EXAFS) and structured diffuse scattering in electron diffraction. The procedure was tested using simulated data generated for a realistic model of perovskite-like KNbO3, which exhibits strongly correlated Nb and O displacements. The results indicated that fitting the powder data (i.e.total scattering or total scattering plus EXAFS) alone fails to reproduce the nanoscale range of displacement correlations. Simultaneous fitting of the powder data and the patterns of diffuse intensity in single-crystal electron diffraction patterns returns significantly more accurate correlation characteristics. The approach and the computer software described in this contribution are not limited to electron diffraction patterns as other types of single-crystal diffraction data (i.e.X-ray or neutron) can be included in the fit.


2002 ◽  
Vol 14 (4) ◽  
pp. 773-783 ◽  
Author(s):  
Marcello Merli ◽  
Fernando Cámara ◽  
Chiara Domeneghetti ◽  
Vittorio Tazzoli

Author(s):  
P. Gay ◽  
M. G. Bown

SummaryPrevious work has established that natural ‘low-temperature’ intermediate plagioclases show single-crystal diffraction patterns in which the subsidiary reflections are split into two; the separation of these split reflections appears to be dependent on the composition of the felspar. Several of these specimens have been subjected to varying heat treatments and their diffraction patterns examined.It is found that over the whole composition range the split subsidiary reflections have disappeared after treatment at high temperatures, and only the principal felspar reflections, which are characteristic of an albite-like structure, remain. Natural specimens initially showing anomalous patterns can also be homogenized in this way by suitable heat treatments. A careful study of the mode of disappearance shows that the separation of the subsidiary reflections is unchanged as long as they remain visible.The structural and petrological implications of this work are discussed.


2000 ◽  
Vol 56 (6) ◽  
pp. 988-992 ◽  
Author(s):  
Frank Haarmann ◽  
Herbert Jacobs ◽  
Manfred Reehuis ◽  
Anja Loose

Potassium hydrogensulfide (KHS) is an ionic compound with an anionic molecular group HS^-. The fast reorientational disorder of the anions was determined for the ambient temperature modification [R\bar 3m; Jeffrey (1974). Can. J. Phys. 52, 2370–2378]. Single crystals are available now as protonated or deuterated specimens. With neutron single-crystal diffraction at room temperature, a considerable anharmonicity of the atom potential of the H or D atoms was observed. Even the thermal motions of K and S atoms show small deviations from an isotropic probability density function, which can be modelled using anharmonic temperature factors. The temperature factors of the atoms were expanded into a Gram–Charlier series [Kuhs (1992). Acta Cryst. A48, 80–98] in order to evaluate the anharmonicity quantitatively. Parameters up to a fourth-order approximation are relevant for the D atoms. Results from neutron single-crystal diffraction are compared with split-atom models extracted from neutron powder diffraction patterns of fully deuterated samples.


1962 ◽  
Vol 12 (10) ◽  
pp. 764-775 ◽  
Author(s):  
R. Bubáková ◽  
J. Drahokoupil ◽  
A. Fingerland

Author(s):  
B. Etschmann ◽  
N. Ishizawa ◽  
V. Streltsov ◽  
S. Oishi

AbstractSingle-crystal diffraction data was collected at 120 and 294 K for an approximately spherical LiNbO


2018 ◽  
Vol 25 (3) ◽  
pp. 748-756 ◽  
Author(s):  
M. X. Tang ◽  
Y. Y. Zhang ◽  
J. C. E ◽  
S. N. Luo

Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.


Sign in / Sign up

Export Citation Format

Share Document