Effect of iodine contrast agent concentration on cerebrovascular dose for synchrotron radiation microangiography based on a simple mouse head model and a voxel mouse head phantom by Monte Carlo simulation

2016 ◽  
Vol 23 (1) ◽  
pp. 304-311 ◽  
Author(s):  
Hui Lin ◽  
Jia Jing ◽  
Yi-Fan Lu ◽  
Cong Xie ◽  
Xiao-Jie Lin ◽  
...  

Effective setting strategies using Monte Carlo simulation are presented to mitigate the irradiation damage in synchrotron radiation microangiography (SRA). A one-dimensional mouse head model and a segmented voxel phantom mouse head were simulated using theEGSnrc/DOSXYZnrccode to investigate the dose enhancement effect of an iodine contrast agent irradiated by a monochromatic synchrotron radiation source. The influence of the iodine concentration, vessel width and depth, protection with and without the skull layer, and various incident X-ray energies were all simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. The dose enhancement ratio depended little on the irradiation depth, but strongly and linearly increasing on iodine concentration. The protection given by the skull layer cannot be ignored in SRA because a 700 µm-thick skull can decrease the dose by 10%. The incident X-ray energy can affect the dose significantly. Compared with a dose of 33.2 keV for 50 mgI ml−1, a dose of 32.7 keV decreased by 38%, whereas a dose of 33.7 keV increased by 69.2% and the variation strengthened more with enhanced iodine concentration. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depended little on the iodine voxel volume ratio but strongly on the iodine concentration. To decrease the damage caused by the dose in SRA, a high-Zcontrast agent should be used as little as possible and irradiation of the injection site of the contrast agent should be avoided immediately after the injection. The fragile vessel containing iodine should avoid being closely irradiated. Avoiding irradiating through a thin (or no) skull region, or attaching a thin equivalent material on the outside for protection are better methods. An incident X-ray energy as low as possible should be used as long as the SRA image quality is ensured. The use of the synergetic and synchronous shuttering technique in SRA is also very critical in order to effectively shorten the accumulative irradiation time inin vivoanimal irradiation experiments.

2021 ◽  
Vol 8 (4) ◽  
pp. 337-345
Author(s):  
Zaynah Sheeraz ◽  
◽  
James C.L. Chow ◽  
◽  

<abstract><sec> <title>Purpose</title> <p>This study compared the dose enhancement predicted in kilovoltage gold nanoparticle-enhanced radiotherapy using the newly developed EGS lattice and the typical gold-water mixture method in Monte Carlo simulation. This new method considered the gold nanoparticle-added volume consisting of solid nanoparticles instead of a gold-water mixture. In addition, this particle method is more realistic in simulation.</p> </sec><sec> <title>Methods</title> <p>A heterogeneous phantom containing bone and water was irradiated by the 105 and 220 kVp x-ray beams. Gold nanoparticles were added to the tumour volume with concentration varying from 3–40 mg/mL in the phantom. The dose enhancement ratio (DER), defined as the ratio of dose at the tumour with and without adding gold nanoparticles, was calculated by the gold-water mixture and particle method using Monte Carlo simulation for comparison.</p> </sec><sec> <title>Results</title> <p>It is found that the DER was 1.44–4.71 (105 kVp) and 1.27–2.43 (220 kVp) for the gold nanoparticle concentration range of 3–40 mg/mL, when they were calculated by the gold-water mixture method. The DER was slightly larger and equal to 1.47–4.84 (105 kVp) and 1.29–2.5 (220 kVp) for the same concentration range, when the particle method was used. Moreover, the DER predicted by both methods increased with an increase of nanoparticle concentration, and a decrease of x-ray beam energy.</p> </sec><sec> <title>Conclusion</title> <p>The deviation of DER determined by the particle and gold-water mixture method was insignificant when considering the uncertainty in the calculation of DER (2%) in the nanoparticle concentration range of 3–40 mg/mL. It is therefore concluded that the gold-water mixture method could predict the dose enhancement as accurate as the newly developed particle method.</p> </sec></abstract>


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 17
Author(s):  
Eldred Lee ◽  
Kaitlin M. Anagnost ◽  
Zhehui Wang ◽  
Michael R. James ◽  
Eric R. Fossum ◽  
...  

High-energy (>20 keV) X-ray photon detection at high quantum yield, high spatial resolution, and short response time has long been an important area of study in physics. Scintillation is a prevalent method but limited in various ways. Directly detecting high-energy X-ray photons has been a challenge to this day, mainly due to low photon-to-photoelectron conversion efficiencies. Commercially available state-of-the-art Si direct detection products such as the Si charge-coupled device (CCD) are inefficient for >10 keV photons. Here, we present Monte Carlo simulation results and analyses to introduce a highly effective yet simple high-energy X-ray detection concept with significantly enhanced photon-to-electron conversion efficiencies composed of two layers: a top high-Z photon energy attenuation layer (PAL) and a bottom Si detector. We use the principle of photon energy down conversion, where high-energy X-ray photon energies are attenuated down to ≤10 keV via inelastic scattering suitable for efficient photoelectric absorption by Si. Our Monte Carlo simulation results demonstrate that a 10–30× increase in quantum yield can be achieved using PbTe PAL on Si, potentially advancing high-resolution, high-efficiency X-ray detection using PAL-enhanced Si CMOS image sensors.


Sign in / Sign up

Export Citation Format

Share Document