A Johann-type X-ray emission spectrometer at the Rossendorf beamline

2016 ◽  
Vol 23 (3) ◽  
pp. 836-841 ◽  
Author(s):  
Kristina O. Kvashnina ◽  
Andreas C. Scheinost

This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5–25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°–89°. The instrument has been tested at high and intermediate incident energies,i.e.at the ZrK-edge and at the AuL3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies.

2021 ◽  
Vol 28 (1) ◽  
pp. 333-349 ◽  
Author(s):  
Andreas C. Scheinost ◽  
Juergen Claussner ◽  
Joerg Exner ◽  
Manuel Feig ◽  
Stefan Findeisen ◽  
...  

ROBL-II provides four different experimental stations to investigate actinide and other alpha- and beta-emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub-p.p.m. range. The XES station with its five bent-crystal analyzer, Johann-type setup with Rowland circles of 1.0 and 0.5 m radii provides high-energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six-circle heavy duty goniometer of XRD-1 is equipped for both high-resolution powder diffraction as well as surface-sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X-ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD-2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.


2017 ◽  
Vol 139 (49) ◽  
pp. 18024-18033 ◽  
Author(s):  
Rebeca G. Castillo ◽  
Rahul Banerjee ◽  
Caleb J. Allpress ◽  
Gregory T. Rohde ◽  
Eckhard Bill ◽  
...  

2015 ◽  
Vol 112 (52) ◽  
pp. 15803-15808 ◽  
Author(s):  
Ofer Hirsch ◽  
Kristina O. Kvashnina ◽  
Li Luo ◽  
Martin J. Süess ◽  
Pieter Glatzel ◽  
...  

The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications.


2017 ◽  
Vol 88 (1) ◽  
pp. 013108 ◽  
Author(s):  
Mauro Rovezzi ◽  
Christophe Lapras ◽  
Alain Manceau ◽  
Pieter Glatzel ◽  
Roberto Verbeni

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi-Tao Cui ◽  
Yoshihisa Harada ◽  
Hideharu Niwa ◽  
Tatsuya Hatanaka ◽  
Naoki Nakamura ◽  
...  

2017 ◽  
Vol 24 (3) ◽  
pp. 674-678 ◽  
Author(s):  
Shengqi Chu ◽  
Lirong Zheng ◽  
Pengfei An ◽  
Hui Gong ◽  
Tiandou Hu ◽  
...  

A new quick-scanning X-ray absorption fine-structure (QXAFS) system has been established on beamline 1W1B at the Beijing Synchrotron Radiation Facility. As an independent device, the QXAFS system can be employed by other beamlines equipped with a double-crystal monochromator to carry out quick energy scans and data acquisition. Both continuous-scan and trapezoidal-scan modes are available in this system to satisfy the time scale from subsecond (in the X-ray absorption near-edge structure region) to 1 min. Here, the trapezoidal-scan method is presented as being complementary to the continuous-scan method, in order to maintain high energy resolution and good signal-to-noise ratio. The system is demonstrated to be very reliable and has been combined with in situ cells to carry out time-resolved XAFS studies.


Sign in / Sign up

Export Citation Format

Share Document