Crystal structure prediction of rigid molecules

Author(s):  
Dennis M. Elking ◽  
Laszlo Fusti-Molnar ◽  
Anthony Nichols

A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties andab initiogas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r6dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups.

2015 ◽  
Vol 79 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Stuart J. Mills ◽  
Andrew G. Christy ◽  
Fernando Colombo ◽  
Jason R. Price

AbstractWe report the single-crystal average structure of cyanotrichite, Cu4Al2[SO4](OH)12(H2O)2, from the Maid of Sunshine mine, Arizona, USA. Cyanotrichite crystallizes in space group C2/m, with the unit-cell parameters a = 12.625(3), b = 2.8950(6), c = 10.153(2) Å and β = 92.17(3)o. All non-hydrogen atoms were located and refined to R1 = 0.0394 for all 584 observed reflections [Fo > 4σFo] and 0.0424 for all 622 unique reflections. The cyanotrichite structure consists of a principal building unit of a three-wide [Cu2Al(OH)6] ribbon of edge-sharing Cu and Al polyhedra || b, similar to that found for camerolaite. The ribbons lie in layers || (001) and between these layers, while SO4 tetrahedra and H2O molecules form rods running || b. A hydrogen-bonding scheme is also proposed.A sample of cyanotrichite from the Cap Garonne mine, Le Pradet, France, showed a 4b superstructure with the following unit cell: space group P2/m, a = 12.611(2) Å, b = 11.584(16) = 4 × 2.896(4) Å, c = 10.190(1) Å and β = 92.29(6)o. The supercell could not be refined in detail, but nevertheless imposes constraints on the local structure in that while the space-group symmetry prevents full order of SO4 and H2O in the 4b supercell, it requires that the sequence of species along any given rod is [-SO4-SO4-(H2O)2-(H2O)2-] rather than [-SO4-(H2O)2-SO4-(H2O)2-].


1999 ◽  
Vol 55 (9) ◽  
pp. 1591-1593 ◽  
Author(s):  
G. Sainz ◽  
J. Vicat ◽  
R. Kahn ◽  
C. Tricot ◽  
V. Stalon ◽  
...  

The catabolic ornithine carbamoyltransferase (OTCase) from Pseudomonas aeruginosa exhibits allosteric behaviour, with two conformational states of the molecule: an active R form and an inactive T form. The enzyme is a dodecamer with a molecular mass of 455700 Da. Three crystal forms have been obtained. Crystals of allosteric state T are rhombohedral, belonging to the R3 space group, with hexagonal unit-cell parameters a = b = 180.6, c = 122.0 Å. They diffract to a resolution of 4.5 Å. Two crystal forms for allosteric state R have been obtained, with hexagonal and cubic symmetries. Hexagonal crystals, which diffract to a resolution of 3.4 Å, belong to the space group P63 with unit-cell parameters a = b = 140.8, c = 145.6 Å. The cubic crystals belong to space group I23, with unit-cell parameter a = 134.32 Å and diffract to a resolution better than 2.5 Å. In all crystal forms, the dodecamer exhibits a 23 point-group symmetry.


2015 ◽  
Vol 79 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Stefano Merlino ◽  
Cristian Biagioni ◽  
Elena Bonaccorsi ◽  
Nikita V. Chukanov ◽  
Igor V. Pekov ◽  
...  

Abstract'Clinobarylite', BaBe2Si2O7, was defined as a monoclinic dimorph of orthorhombic barylite. Subsequently, its crystal structure was also proved to be orthorhombic, differing from barylite in terms of the space group symmetry, Pmn21 instead of Pmnb, and in unit-cell dimensions. Through the order-disorder (OD) theory, the polytypic relationships between 'clinobarylite' and barylite are described. 'Clinobarylite' corresponds to the MDO1 polytype, with unit-cell parameters a = 11.650, b = 4.922, c = 4.674 Å, space group Pmn21; barylite corresponds to the MDO2 polytype, with a = 11.67, b = 9.82, c = 4.69 Å, space group Pmnb. The re-examination of the holotype specimen of 'clinobarylite' confirmed its orthorhombic symmetry. Its crystal structure has been refined starting from the atomic coordinates calculated for the MDO1 polytype and the refinement converged to R1 = 0.0144 for 929 observed reflections [Fo > 4σFo]. Owing to their polytypic relationships, 'clinobarylite' and barylite should be conveniently indicated as barylite-1O and barylite-2O, respectively; the name 'clinobarylite' should be discontinued. This new nomenclature of the barylite polytypes has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 13-E).


2014 ◽  
Vol 70 (11) ◽  
pp. 1468-1471
Author(s):  
Trung Thanh Thach ◽  
Sangho Lee

Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase fromStreptococcus pneumoniaeD39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groupsP21andP1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space groupC2, with unit-cell parametersa= 73.5,b= 54.3,c= 62.7 Å, β = 118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cαatoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitorP1,P5-bis(adenosine-5′-)pentaphosphate (Ap5A) belonged to space groupP1, with unit-cell parametersa= 53.9,b= 62.3,c= 63.0 Å, α = 101.9, β = 112.6, γ = 89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.


1998 ◽  
Vol 54 (3) ◽  
pp. 211-220 ◽  
Author(s):  
R. P. Hammond ◽  
J. Barbier

Hexagonal (Na3/4K1/4)AlGeO4 crystallizes in the space group P63 with unit-cell parameters a = 10.164 (2), c = 8.540 (2) Å and Z = 8 [wR(F 2) = 0.066 for all 3060 independent reflections]. Monoclinic (Na3/4K1/4)AlGeO4 crystallizes in the space group P21 with unit-cell parameters a = 10.0477 (4), b = 8.5764 (4), c = 10.2118 (4) Å, β = 119.035 (1)° and Z = 8 [wR(F 2) = 0.120 for all 3194 independent reflections measured on a twinned crystal]. Both structures belong to the large family of stuffed tridymites, with the Al and Ge atoms occupying tetrahedral sites, and the alkali atoms occupying the cavities of the tetrahedral framework. Hexagonal (Na3/4K1/4)AlGeO4 is isostructural with the silicate mineral nepheline (Na3/4K1/4)AlSiO4, while monoclinic (Na3/4K1/4)AlGeO4 corresponds to a minor distortion of the nepheline structure. Chemical analysis by electron microprobe and structure determination of flux-grown single crystals indicate that the hexagonal form with the chemical formula (Na0.78K0.19)Al0.97Ge1.03O4 may be stabilized by an alkali deficiency similar to that found in hexagonal natural nephelines. In contrast, all alkali sites are fully occupied in the monoclinic form of composition (Na0.75K0.25)AlGeO4 and the lower symmetry eliminates the oxygen disorder present in the hexagonal form.


2021 ◽  
pp. 1-3
Author(s):  
J. Maixner ◽  
J. Ryšavý

X-ray powder diffraction data, unit-cell parameters, and space group for tetrazene nitrate monohydrate, C2H9N11O4, are reported [a = 5.205(1) Å, b = 13.932(3) Å, c = 14.196(4) Å, β = 97.826(3)°, unit-cell volume V = 1019.8(4) Å3, Z = 4, and space group P21/c]. All measured lines were indexed and are consistent with the P21/c space group. No detectable impurities were observed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akira Yoshiasa ◽  
Tsubasa Tobase ◽  
Hiroshi Arima-Osonoi ◽  
Ken-Ichi Funakoshi ◽  
Osamu Ohtaka ◽  
...  

Abstract High-temperature X-ray diffraction (XRD) experiments up to T = 2710 °C have been performed on ZrSiO4 and ZrO2 powders, using the container-less levitation technique. A two-dimensional imaging plate (IP) detector was used for short-time observation. The diffraction data in a wide area was projected in one dimension. The unit cell parameters, thermal expansions, and c/a ratios for ZrSiO4 (space group I41/amd and Z = 4), tetragonal ZrO2 (space group P42/nmc and Z = 2) and cubic ZrO2 (space group  F m 3   ‾ m $Fm3‾{}m$ and Z = 4) were measured to understand the high-temperature behaviors. The transition temperature between tetragonal and cubic ZrO2 was specified to be between 2430 and 2540 °C. The pre-transitional behavior was observed around 2200 °C. As no clear change in unit cell volume is evident, the phase boundary between the tetragonal and the cubic phase has been shown to be a positive slope. The ZrO2 and ZrO2–SiO2 phase diagrams are proposed based on the chemical composition and the crystal structure.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 299 ◽  
Author(s):  
Krzysztof Konieczny ◽  
Arkadiusz Ciesielski ◽  
Julia Bąkowicz ◽  
Tomasz Galica ◽  
Ilona Turowska-Tyrk

We studied the photochemical reactivity of salts of 4-(2,4,6-triisopropylbenzoyl)benzoic acid with propane-1,2-diamine (1), methanamine (2), cyclohexanamine (3), and morpholine (4), for compounds (1), (3), and (4) at 0.1 MPa and for compounds (1) and (2) at 1.3 GPa and 1.0 GPa, respectively. The changes in the values of the unit cell parameters after UV irradiation and the values of the intramolecular geometrical parameters indicated the possibility of the occurrence of the Norrish–Yang reaction in the case of all the compounds. The analysis of the intramolecular geometry and free spaces revealed which o-isopropyl group takes part in the reaction. For (1), the same o-isopropyl group should be reactive at ambient and high pressures. In the case of (2), high pressure caused the phase transition from the space group I2/a with one molecule in the asymmetric unit cell to the space group P1¯ with two asymmetric molecules. The analysis of voids indicated that the Norrish–Yang reaction is less probable for one of the two molecules. For the other molecule, the intramolecular geometrical parameters showed that except for the Norrish–Yang reaction, the concurrent reaction leading to the formation of a five-membered ring can also proceed. In (3), both o-isopropyl groups are able to react; however, the bigger volume of a void near 2-isopropyl may be the factor determining the reactivity. For (4), only one o-isopropyl should be reactive.


Author(s):  
Fang Lu ◽  
Bei Zhang ◽  
Yong Liu ◽  
Ying Song ◽  
Gangxing Guo ◽  
...  

Phytases are phosphatases that hydrolyze phytates to less phosphorylatedmyo-inositol derivatives and inorganic phosphate. β-Propeller phytases, which are very diverse phytases with improved thermostability that are active at neutral and alkaline pH and have absolute substrate specificity, are ideal substitutes for other commercial phytases. PhyH-DI, a β-propeller phytase fromBacillussp. HJB17, was found to act synergistically with other single-domain phytases and can increase their efficiency in the hydrolysis of phytate. Crystals of native and selenomethionine-substituted PhyH-DI were obtained using the vapour-diffusion method in a condition consisting of 0.2 Msodium chloride, 0.1 MTris pH 8.5, 25%(w/v) PEG 3350 at 289 K. X-ray diffraction data were collected to 3.00 and 2.70 Å resolution, respectively, at 100 K. Native PhyH-DI crystals belonged to space groupC121, with unit-cell parametersa = 156.84,b = 45.54,c = 97.64 Å, α = 90.00, β = 125.86, γ = 90.00°. The asymmetric unit contained two molecules of PhyH-DI, with a corresponding Matthews coefficient of 2.17 Å3 Da−1and a solvent content of 43.26%. Crystals of selenomethionine-substituted PhyH-DI belonged to space groupC2221, with unit-cell parametersa = 94.71,b= 97.03,c= 69.16 Å, α = β = γ = 90.00°. The asymmetric unit contained one molecule of the protein, with a corresponding Matthews coefficient of 2.44 Å3 Da−1and a solvent content of 49.64%. Initial phases for PhyH-DI were obtained from SeMet SAD data sets. These data will be useful for further studies of the structure–function relationship of PhyH-DI.


1999 ◽  
Vol 55 (4) ◽  
pp. 907-909 ◽  
Author(s):  
Jun Masuda ◽  
Tetsuya Yamaguchi ◽  
Takamasa Tobimatsu ◽  
Tetsuo Toraya ◽  
Kyoko Suto ◽  
...  

Two crystal forms of Klebsiella oxytoca diol dehydratase complexed with cyanocobalamin have been obtained and preliminary crystallographic experiments have been performed. The crystals belong to two different space groups, depending on the crystallization conditions. One crystal (form I) belongs to space group P212121 with unit-cell parameters a = 76.2, b = 122.3, c = 209.6 Å, and diffracts to 2.2 Å resolution using an X-ray beam from a synchrotron radiation source. The other crystal (form II) belongs to space group P21 with unit-cell parameters a = 75.4, b = 132.7, c = 298.8 Å, β = 91.9°, and diffracts to 3.0 Å resolution. For the purpose of structure determination, a heavy-atom derivative search was carried out and some mercuric derivatives were found to be promising. Structure analysis by the multiple isomorphous replacement method is now under way.


Sign in / Sign up

Export Citation Format

Share Document