Copper(II) bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionate) complexes with pyridin-2-one, 3-hydroxypyridine and 3-hydroxypyridin-2-one ligands: molecular structures and hydrogen-bonded networks

2017 ◽  
Vol 73 (11) ◽  
pp. 960-967 ◽  
Author(s):  
Franc Perdih

Copper(II) bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionate) complexes with pyridin-2-one (pyon), 3-hydroxypyridine (hpy) and 3-hydroxypyridin-2-one (hpyon) were prepared and the solid-state structures of (pyridin-2-one-κO)bis(4,4,4-trifluoro-3-oxo-1-phenylbutan-1-olato-κ2 O,O′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb-κ2 O,O′)2(pyon-κO)], (I), bis(pyridin-3-ol-κO)bis(4,4,4-trifluoro-3-oxo-1-phenylbutan-1-olato-κ2 O,O′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb-κ2 O,O′)2(hpy-κO)2], (II), and bis(3-hydroxypyridin-2-one-κO)bis(4,4,4-trifluoro-3-oxo-1-phenylbutan-1-olato-κ2 O,O′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb-κ2 O,O′)2(hpyon-κO)2], (III), were determined by single-crystal X-ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β-diketonate ligands in (I) and a trans-octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO-monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two-dimensional hydrogen-bonded network through O—H...N interactions, forming a graph-set motif R 2 2(7) through a C—H...O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two-dimensional hydrogen-bonded network is formed through N—H...O interactions facilitated by C—H...O interactions, forming the graph-set motifs R 2 2(8) and R 2 2(7).

2001 ◽  
Vol 05 (09) ◽  
pp. 702-707 ◽  
Author(s):  
LI CHEN ◽  
JESSE B. FOX ◽  
GEUN-BAE YI ◽  
MASOOD A. KHAN ◽  
GEORGE B. RICHTER-ADDO

Para-aminosubstituted nitrosoarenes react with Ru ( CO )( OEP ) or [ Co ( TPP )( THF )2] SbF 6 (OEP2- = 2,3,7,8,12,13,17,18-octaethylporphyrinato dianion, TPP2- = 5,10,15,20-tetraphenylporphyrinato dianion) to generate Ru ( OEP )( ONC 6 H 4 NMe 2)2 and [ Co ( TPP )( ONC 6 H 4 NR 2)2] SbF 6 ( R = Me , Et ), respectively, in fair to high yields. These N -bound nitrosoarene complexes have been characterized by spectroscopic methods. The complexes Ru ( OEP )( ONC 6 H 4 NMe 2)2 and [ Co ( TPP )( ONC 6 H 4 NMe 2)2] ClO 4 have also been characterized by single-crystal X-ray crystallography. Their structures represent the first reported solid-state structures of Ru and Co porphyrins containing C-nitroso ligands.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 607-612 ◽  
Author(s):  
Man-Kit Lau ◽  
Joyce LC Chim ◽  
Wing-Tak Wong ◽  
Ian D Williams ◽  
Wa-Hung Leung

Reaction of [OsO4] with C7H7MgBr (C7H7 = 2-methylphenyl) followed by column chromatography afforded the reported osmium tetraaryl [Os(C7H7)4] along with the oxo-osmium(VI) ([OsO(C7H7)4]) (1) (13%) and the dioxo-osmium(VI) ([OsO2(C7H7)2]) (2) (25%) complexes. Treatment of [OsO4] with C8H9MgBr (C8H9 = 2,5-dimethylphenyl) gave a mixture of [Os(C8H9)4] (3) (34%) and [OsO(C8H9)4] (4) (4%) while that with C8H9OMgBr (C8H9O = 4-methoxy-2-methylphenyl) afforded [OsO(C8H9O)4] (5) in 20% yield. Oxidation of 3 with 3-chloroperoxybenzoic acid afforded 4 in good yield. The solid-state structures of 1 and 4 have been established by X-ray crystallography. Crystals of 1 are tetragonal with a = 13.080(1) and c = 6.6506(5) Å, V = 1137.9(1) Å3, Z = 2, and space group of P4/n; while those of 4 are tetragonal with a = 13.593(2) and c = 7.377(2) Å, V = 1363.0(5) Å3, Z = 4, and space group of P4/n. The geometry around osmium in both complexes is square pyramidal with the oxo ligand occupying apical position. The Os—O and Os—C distances in 1 are 1.652(2) and 2.084(1) Å, respectively, while those in 4 are 1.688(7) and 2.088(4) Å, respectively. The cyclic voltammograms of the monooxo aryl osmium(VI) compounds show reversible Os(VI/V) couple at around –1.4 V vs. ferrocene/ferrocenium couple.Key words: osmium(VI), oxo aryl complexes.


1996 ◽  
Vol 51 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Thomas Dahlems ◽  
Dietrich Mootz ◽  
Michaela Schilling

Abstract Hydrate formation of haloacetic acids CClnF3-nCOOH (n = 1, 2, 3) has been studied by DTA and temperature-dependent X-ray powder diffraction, and evidence obtained for five phases, all melting at temperatures below ambient. The hydrates have been confirmed and further characterized by their crystal structures at -150 °C. Three lower hydrates, CCl2FCOOH· 0.5H2O (space group P21/c and Z = 8 formula unites per unit cell), CClF2COOHH2O (P21/c, Z = 4), and CClF2COOH ·4H2O (P1̄, Z = 2), have molecular structures with the acid and water molecules hydrogen-bonded in two-dimensional arrays. The structures of the remaining hydrates, CCl2FCOOH·6H2O and CCl3COOH · 6H2O (similar, but not isotypic, both P1̄ and Z = 2), are ionic, as (H5O2+)(CX3COO-) · 4H2O , and three-dimensional. The neutral water molecules are hydrogen-bonded in ice-like layers rare in crystal chemistry. Also, CCl2FCOOH is established only as the second acid of which a lower hydrate is molecular and a higher one ionic.


1996 ◽  
Vol 49 (3) ◽  
pp. 391 ◽  
Author(s):  
P Koll ◽  
J Kopf

The solid-state structures of the title compounds were determined by conventional single-crystal X-ray crystallography. In both cases a planar zigzag conformation of the carbon skeleton is observed with a resulting 1,3-parallel orientation of O(2) and O(4). In the case of the heptaacetate even a second such arrangement is established between O(3) and one of the oxygens at C(1). These findings substantiate the claim that such conformations are not as unfavourable as previously was assumed by many authors.


2021 ◽  
Vol 68 (1) ◽  
pp. 193-204
Author(s):  
Anže Čavić ◽  
Franc Perdih

Manganese(II) bis(4,4,4-trifluoro-1-phenylbutane-1,3-dionate) complexes with pyridin-4-one (pyon), 3-hydroxypyridin-2-one (hpyon), 1-fluoropyridine (pyF) and methanol were prepared and the solid-state structures were determined by single-crystal X-ray analysis. The coordination of the metal center in all complexes was found to be octahedral. In compounds [Mn(tfpb)2(pyon)2] (1) and [Mn(tfpb)2(hpyon)2] (2) extended hydrogen bonding is present facilitating the formation of a three-dimensional supramolecular structure in 1 and a layered structure in 2 through N–H···O hydrogen bonding enhanced by C–H···O interactions as well as C–F···π interactions. In [Mn(tfpb)2(pyF)2] (3) a layered structure is formed through C–H···O and C–H···F interactions as well as π···π and C–F···π interactions. In [Mn(tfpb)2(MeOH)2] (4) a layered structure is formed through a combination of O–H···O and C–F···π interactions.


2007 ◽  
Vol 62 (10) ◽  
pp. 1339-1342 ◽  
Author(s):  
Surajit Jana ◽  
Tania Pape ◽  
Norbert W. Mitzel

The reaction of dimethylcadmium with alcohols R-OH in equimolar ratio leads to the formation of tetrameric methylcadmium alkoxides with molecular formula [(MeCd)4 (OR)4] [R = Me (1), Et (2) and iPr (3)]. These compounds have been characterised by 1H, 13C NMR and IR spectroscopy, by mass spectrometry, elemental analyses and by X-ray crystallography (for 2 and 3). The solid state structures show distorted cubane-type aggregates with Cd4O4 cores. The structural aspects and the spectroscopic characterisations of these compounds are discussed.


2016 ◽  
Vol 52 (66) ◽  
pp. 10144-10146 ◽  
Author(s):  
Felix Hanke ◽  
Sarah Hindley ◽  
Anthony C. Jones ◽  
Alexander Steiner

X-ray structures and DFT calculations show that the HT phase is of Me2Cd is two-dimensionally disordered, while the LT phase is ordered. Both phases contain linearly coordinated cadmium atoms; methyl groups are staggered in the HT form and eclipsed in the LT-form.


Author(s):  
A.V. Yatsenko ◽  
K.A. Paseshnichenko ◽  
S.I. Popov

The crystal and molecular structures of 2-methyl-1-methylamino-anthraquinone (I) and 1-methylphenylamino-anthraquinone (II) were studied by the X-ray single-crystal diffraction and the visible spectra of crystalline specimens and their solutions were recorded. The molecule I is closely planar, whereas in the molecule II the amino group is 58° rotated out of the plane of the anthraquinone skeleton. In both structures the molecules pack in stacks. The comparison of experimental and calculated (on the DFT and AM1 levels) molecular structures, together with the comparison of experimental and INDO/S-calculated electronic spectra, give the evidence that molecular conformations (especially for II) change upon transfer from the solid state to solutions, and the π-delocalisation throughout the whole molecule enhances in the solid state.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5745
Author(s):  
Sergey A. Anufriev ◽  
Sergey V. Timofeev ◽  
Alexei A. Anisimov ◽  
Kyrill Yu. Suponitsky ◽  
Igor B. Sivaev

Complexation of the 8,8′-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides) [8,8′-(MeS)2-3,3′-M(1,2-C2B9H10)2]− (M = Co, Fe) with copper, silver, palladium and rhodium leads to the formation of the corresponding chelate complexes, which is accompanied by a transition from the transoid to the cisoid conformation of the bis(dicarbollide) complex. This transition is reversible and can be used in design of coordination-driven molecular switches based on transition metal bis(dicarbollide) complexes. The solid-state structures of {(Ph3P)ClPd[8,8′- (MeS)2-3,3′-Co(1,2-C2B9H10)2-κ2-S,S′]} and {(COD)Rh[8,8′-(MeS)2-3,3′-Co(1,2-C2B9H10)2-κ2-S,S′]} were determined by single crystal X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document