Crystal structure, thermal properties and detonation characterization of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride

2020 ◽  
Vol 76 (8) ◽  
pp. 821-827
Author(s):  
Hongya Li ◽  
Biao Yan ◽  
Haixia Ma ◽  
Xiangrong Ma ◽  
Zhiyong Sun ◽  
...  

Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride (BATZM·Cl2 or C5H10N8 2+·2Cl−) was synthesized and crystallized, and the crystal structure was characterized by single-crystal X-ray diffraction; it belongs to the space group C2/c (monoclinic) with Z = 4. The structure of BATZM·Cl2 can be described as a V-shaped molecule with reasonable chemical geometry and no disorder, and its one-dimensional structure can be described as a rhombic helix. The specific molar heat capacity (Cp ,m) of BATZM·Cl2 was determined using the continuous C p mode of a microcalorimeter and theoretical calculations, and the Cp ,m value is 276.18 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp ,m, HT – H 298.15K and ST – S 298.15K of BATZM·Cl2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM·Cl2 were estimated using the nitrogen equivalent equation according to the experimental density; BATZM·Cl2 has a higher detonation velocity (7143.60 ± 3.66 m s−1) and detonation pressure (21.49 ± 0.03 GPa) than TNT. The above results for BATZM·Cl2 are compared with those of bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM) and the effect of salt formation on them is discussed.

2020 ◽  
Vol 76 (1) ◽  
pp. 64-68 ◽  
Author(s):  
Hongya Li ◽  
Biao Yan ◽  
Haixia Ma ◽  
Zhiyong Sun ◽  
Yajun Ma ◽  
...  

Bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM, C5H8N8) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group Fdd2 (orthorhombic) with Z = 8. The structure of BATZM can be described as a V-shaped molecule with reasonable chemical geometry and no disorder. The specific molar heat capacity (Cp,m ) of BATZM was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 211.19 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m , HT – H 298.15K and ST – S 298.15K of BATZM are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM were estimated using the nitrogen equivalent equation according to the experimental density; BATZM has a higher detonation velocity (7954.87 ± 3.29 m s−1) and detonation pressure (25.72 ± 0.03 GPa) than TNT.


2020 ◽  
Vol 76 (10) ◽  
pp. 965-971
Author(s):  
Hongya Li ◽  
Biao Yan ◽  
Haixia Ma ◽  
Xiangrong Ma ◽  
Zhiyong Sun ◽  
...  

Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dinitrate, BATZM·(NO3)2 or C5H10N8 2+·2NO3 −, was synthesized and its crystal structure determined by single-crystal X-ray diffraction. It crystallizes in the space group Pbcn (orthorhombic) with Z = 4. BATZM·(NO3)2 is a V-shaped molecule where hydrogen bonds form a two-dimensional corrugated sheet with reasonable chemical geometry and no disorder. The specific molar heat capacity (C p,m) of BATZM·(NO3)2 was determined using the continuous C p mode of a microcalorimeter and theoretical calculations, and the C p,m value is 366.14 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of C p,m, HT – H 298.15K and ST – S 298.15K of BATZM·(NO3)2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) were estimated using the nitrogen equivalent equation according to the experimental density; BATZM·(NO3)2 has a higher detonation velocity (7927.47 ± 3.63 m s−1) and detonation pressure (27.50 ± 0.03 GPa) than 2,4,6-trinitrotoluene (TNT). The above results for BATZM·(NO3)2 are compared with those of bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM) and bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dihydrochloride (BATZM·Cl2), and the effect of nitrate formation is discussed.


2020 ◽  
Vol 76 (9) ◽  
pp. 891-896
Author(s):  
Biao Yan ◽  
Hongya Li ◽  
Haixia Ma ◽  
Xiangrong Ma ◽  
Zhiyong Sun ◽  
...  

Bis(4,5-diamino-1,2,4-triazol-3-yl)methane monohydrate (BDATZM·H2O or C5H10N10·H2O) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group P-1 (triclinic) with Z = 2. The structure of BDATZM·H2O can be described as a two-dimensional ladder plane with extensive hydrogen bonding and no disorder. The thermal behaviour was studied under non-isothermal conditions by differential scanning calorimetry (DSC) and thermogravimetric/differential thermogravimetric (TG/DTG) methods. The detonation velocity (D) and detonation pressure (P) of BDATZM were estimated using the nitrogen equivalent equation according to the experimental density. A comparison between BDATZM·H2O and bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM) was made to determine the effect of the amino group; the results suggest that the amino group increases the hydrophilicity, space utilization and energy, and decreases the thermal stability and symmetry of the resulting compound.


2014 ◽  
Vol 10 (9) ◽  
pp. 3116-3126 ◽  
Author(s):  
Wijdene Nbili ◽  
Kamel Kaabi ◽  
Valeria Ferretti ◽  
Frederic Lefebvre ◽  
Cherif Ben Nasr

A new noncentrosymmetric Zn(II) complex with the monodentate ligand 2-amino-5-chloropyridine (AClPy), ZnCl2(C5H5ClN2)2, has been prepared at room temperature and characterized by single crystal X-ray diffraction, 13C CP-MAS-NMR and IR spectroscopies. The basic coordination pattern of the AClPy coordinated metal cations is slighly distorted tetrahedral. The crystal structure is characterized by ZnCl2N2 tetrahedra interconnected via N-H···Cl hydrogen bonds generated by the NH2 amino group to form chains extending along the (a-c) direction. The exocyclic N atom is an electron receiving center, which is consistent with features of imino resonance as evidenced by bond lengths and angles. The crystal structure is stabilized by sets of intra and intermolecular hydrogen bonds. The 13C CP-MAS NMR spectrum is discussed and the vibrational absorption bands are identified by infrared spectroscopy and theoretical calculations.


Author(s):  
Vineela Balisetty ◽  
Kanamaluru Vidyasagar

The quaternary A 2W3SeO12 (A = NH4, Cs, Rb, K or Tl) selenites have been prepared in the form of single crystals by hydrothermal and novel solid-state reactions. They were characterized by X-ray diffraction, thermal and spectroscopic studies. All of them have a hexagonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework with pyramidally coordinated Se4+ ions. The known A 2W3SeO12 (A = NH4, Cs or Rb) compounds are isostructural with the Cs2W3TeO12 compound and have a non-centrosymmetric layered structure containing intra-layer Se—O bonds. The new compound K2W3SeO12(α) is isostructural with the K2W3TeO12 compound and has a centrosymmetric three-dimensional structure containing interlayer Se—O bonds. It is inferred that the new Tl2W3SeO12 compound has the same three-dimensional structure as K2W3SeO12(α).


2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


2019 ◽  
Vol 74 (4) ◽  
pp. 381-387
Author(s):  
Michael Zoller ◽  
Jörn Bruns ◽  
Gunter Heymann ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractA potassium tetranitratopalladate(II) with the composition K2[Pd(NO3)4] · 2HNO3 was synthesized by a simple solvothermal process in a glass ampoule. The new compound crystallizes in the monoclinic space group P21/c (no. 14) with the lattice parameters a = 1017.15(4), b = 892.94(3), c = 880.55(3) Å, and β = 98.13(1)° (Z = 2). The crystal structure of K2[Pd(NO3)4] · 2HNO3 reveals isolated complex [Pd(NO3)4]2− anions, which are surrounded by eight potassium cations and four HNO3 molecules. The complex anions and the cations are associated in layers which are separated by HNO3 molecules. K2[Pd(NO3)4] · 2HNO3 can thus be regarded as a HNO3 intercalation variant of β-K2[Pd(NO3)4]. The characterization is based on single-crystal X-ray and powder X-ray diffraction.


2001 ◽  
Vol 79 (11-12) ◽  
pp. 1415-1419 ◽  
Author(s):  
T Fennell ◽  
S T Bramwell ◽  
M A Green

We present an experimental investigation of the structural and magnetic properties of Ho3SbO7 and Dy3SbO7. These compounds adopt the Y3TaO7 structure, space group C2221. The magnetic rare-earth ions occupy an intricate lattice related to the pyrochlore lattice that occurs in Ho2Ti2O7 and Dy2Ti2O7. The crystal structure of Ho3SbO7 is determined by Rietveld refinement of the powder X-ray diffraction pattern at ambient temperature, and that of the Dy analogue is inferred to be similar. Magnetic susceptibility measurements show that Ho3SbO7 and Dy3SbO7 have negative Curie–Weiss temperatures: –8.4 K (Ho) and –9.2 K (Dy). Magnetic transitions have been detected at 2.0 K (Ho) and 3.0 K (Dy). We discuss the results in terms of the ``dipolar spin ice model'' that has been used to describe Ho2Ti2O7 and Dy2Ti2O7. PACS Nos.: 75.25+z, 75.50Ee, 61.10Nz


2016 ◽  
Vol 71 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Oscar E. Piro ◽  
Gustavo A. Echeverría ◽  
Beatriz S. Parajón-Costa ◽  
Enrique J. Baran

AbstractMagnesium acesulfamate, Mg(C4H4NO4S)2·6H2O, was prepared by the reaction of acesulfamic acid and magnesium carbonate in aqueous solution, and characterized by elemental analysis. Its crystal structure was determined by single crystal X-ray diffraction methods. The substance crystallizes in the triclinic space group P1̅ with one molecule per unit cell. The FTIR spectrum of the compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate and saccharinate salts are also made.


2008 ◽  
Vol 63 (5) ◽  
pp. 543-547 ◽  
Author(s):  
Inés Viera ◽  
Laura Domínguez ◽  
Javier Ellena ◽  
María H. Torre

This work reports the synthesis and characterization of a new copper complex with nadolol, a betablocker aminoalcohol. The stoichiometry found was Na[Cu(nadololate)(CO3)] · H2O. Electronic and vibrational spectroscopy analysis was performed, and the crystal structure of Na[Cu(nadololate)-(CO3)] · H2O was determined by X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document