scholarly journals Investigation of exponential RNA amplification by the Qβ replicase complex

2014 ◽  
Vol 70 (a1) ◽  
pp. C1602-C1602
Author(s):  
Heidi Olesen ◽  
Charlotte Knudsen ◽  
Paulina Seweryn ◽  
Ditlev Brodersen ◽  
Zarina Kutlubaeva ◽  
...  

Positive-stranded RNA viruses are common among human pathogenic viruses, which often cooperate with host proteins to fulfill essential functions during infection. One function is replication of the viral genome. The Qβ phage is a positive-stranded RNA virus that infects E.coli. The Qβ replicase holo enzyme comprises the phage-encoded RNA-dependent RNA polymerase (β-subunit) and the host-encoded translation elongation factors, EF-Ts and EF-Tu as well as the ribosomal protein S1. The Qβ replicase has an extraordinary ability to exponentially amplify RNA in vivo and in vitro. A prerequisite for this is release of product and template RNA as single strands that can serve as new templates in subsequent rounds of replication. The role of S1 in the Qβ replicase is not clear. Recently, S1 was found to promote release of single-stranded product in Qβ replicase–mediated RNA synthesis. We have undertaken NMR spectroscopy and crystallization trials to improve our understanding of distinct S1 domains in solution as well as the ribosome- and replicase-binding properties of S1. Expression of distinct S1 domains for NMR spectroscopy has been optimized by use of autoinduction and results in high yields of [13C15N]-labelled protein fragments. These have proven very suitable for NMR studies and spectra revealed both ordered and disordered regions in the protein. Studies are ongoing. The structure of the Qβ core complex was recently determined at 2.5Å resolution. Thus, co-crystallization of the Qβ core in complex with S1 domains was undertaken and different crystal forms were obtained. These initial crystals diffracted to 3.2Å resolution and data processing as well as further optimization of the crystals is ongoing. S1 is thought to bind the β-subunit close to a region lined with basic amino acids, which potentially could facilitate interactions with the template RNA backbone and split it from the product strand. We demonstrate that neutralization of these basic amino acids indeed decrease or abolish infectivity of the Qβ phage. However, only one mutation, R503A affects the exponential replication in vitro. Crystallization of the Qβ holo enzyme bound to a truncated legitimate RNA template will be the next step for investigation of the mechanism of exponential RNA amplification by Qβ replicase.

2001 ◽  
Vol 357 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Antony J. MATHEWS ◽  
Thomas BRITTAIN

We have used NMR spectroscopy to measure haem disorder in adult human haemoglobin (HbA) obtained from mature erythrocyte cells and from yeast expressing recombinant HbA. Reticulocyte-derived HbA contained much higher levels of haem disorder (11% α- and 28% β-subunit disorder) than observed for HbA from mature erythrocytes (1.5% α- and 8% β-subunit disorder). Thus, unlike in vitro combination of haem and apoHb, biosynthetic haem insertion is not random with respect to orientation, but appears to show stereoselectivity. Recombinant HbA isolated from yeast showed 32% α- and 45% β-subunit haem disorder. These levels relaxed to their equilibrium positions after incubating the Hb in the ferric form. Recombinant embryonic human Hbs showed less haem disorder than recombinant HbA. The levels of haem disorder in embryonic Hbs ∊2∊2 and ∊2γ2 appear to have their equilibrium values. We propose that, in eukaryotes, in vivo haem insertion occurs via both co-translational mechanisms and insertion via semiHb-β.


1995 ◽  
Vol 60 (12) ◽  
pp. 2170-2177 ◽  
Author(s):  
Zdenko Procházka ◽  
Jiřina Slaninová
Keyword(s):  

Solid phase technique on p-methylbenzhydrylamine resin was used for the synthesis of four analogs of oxytocin and four analogs of vasopressin with the non-coded amino acids L- or D- and 1- or 2-naphthylalanine and D-homoarginine. [L-1-Nal2]oxytocin, [D-1-Nal2]oxytocin, [L-2-Nal2]oxytocin, [D-2-Nal2]oxytocin, [L-1-Nal2, D-Har8]vasopressin, [D-1-Nal2, D-Har8]vasopressin, [L-2-Nal2, D-Har8]vasopressin and [D-2-Nal2, D-Har8]vasopressin were synthesized. All eight analogs were found to be uterotonic inhibitors in vitro and in vivo. Analogs with 2-naphthylalanine are stronger inhibitors, particularly in the vasopressin series than the analogs with 1-naphthylalanine. Analogs with 1-naphthylalanine have no activity in the pressor test, analogs with 2-naphthylalanine are weak pressor inhibitors.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1301
Author(s):  
Ivonne Melano ◽  
Li-Lan Kuo ◽  
Yan-Chung Lo ◽  
Po-Wei Sung ◽  
Ni Tien ◽  
...  

Amino acids have been implicated with virus infection and replication. Here, we demonstrate the effects of two basic amino acids, arginine and lysine, and their ester derivatives on infection of two enveloped viruses, SARS-CoV-2, and influenza A virus. We found that lysine and its ester derivative can efficiently block infection of both viruses in vitro. Furthermore, the arginine ester derivative caused a significant boost in virus infection. Studies on their mechanism of action revealed that the compounds potentially disturb virus uncoating rather than virus attachment and endosomal acidification. Our findings suggest that lysine supplementation and the reduction of arginine-rich food intake can be considered as prophylactic and therapeutic regimens against these viruses while also providing a paradigm for the development of broad-spectrum antivirals.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4587
Author(s):  
Fanny d’Orlyé ◽  
Laura Trapiella-Alfonso ◽  
Camille Lescot ◽  
Marie Pinvidic ◽  
Bich-Thuy Doan ◽  
...  

There is a challenging need for the development of new alternative nanostructures that can allow the coupling and/or encapsulation of therapeutic/diagnostic molecules while reducing their toxicity and improving their circulation and in-vivo targeting. Among the new materials using natural building blocks, peptides have attracted significant interest because of their simple structure, relative chemical and physical stability, diversity of sequences and forms, their easy functionalization with (bio)molecules and the possibility of synthesizing them in large quantities. A number of them have the ability to self-assemble into nanotubes, -spheres, -vesicles or -rods under mild conditions, which opens up new applications in biology and nanomedicine due to their intrinsic biocompatibility and biodegradability as well as their surface chemical reactivity via amino- and carboxyl groups. In order to obtain nanostructures suitable for biomedical applications, the structure, size, shape and surface chemistry of these nanoplatforms must be optimized. These properties depend directly on the nature and sequence of the amino acids that constitute them. It is therefore essential to control the order in which the amino acids are introduced during the synthesis of short peptide chains and to evaluate their in-vitro and in-vivo physico-chemical properties before testing them for biomedical applications. This review therefore focuses on the synthesis, functionalization and characterization of peptide sequences that can self-assemble to form nanostructures. The synthesis in batch or with new continuous flow and microflow techniques will be described and compared in terms of amino acids sequence, purification processes, functionalization or encapsulation of targeting ligands, imaging probes as well as therapeutic molecules. Their chemical and biological characterization will be presented to evaluate their purity, toxicity, biocompatibility and biodistribution, and some therapeutic properties in vitro and in vivo. Finally, their main applications in the biomedical field will be presented so as to highlight their importance and advantages over classical nanostructures.


1980 ◽  
Vol 238 (1) ◽  
pp. E46-E52
Author(s):  
S. L. Augustine ◽  
R. W. Swick

The recovery of approximately 40% of the total liver protein during the first day after partial hepatectomy was shown to be due to the near cessation of protein breakdown rather than to an increase in protein synthesis. The decrease in degradation of total protein was less if rats were adrenalectomized or protein-depleted prior to partial hepatectomy. The effect of these treatments originally suggested that changes in free amino acid levels in liver might be related to the rate of protein degradation. However, no correlation was found between levels of total free amino acids and rates of breakdown. Measurements of individual amino acids during liver regeneration suggested that levels of free methionine and phenylalanine, amino acids that have been found to lower rates of protein degradation in vitro, are not correlated with rates of breakdown in vivo. The difference between the fractional rate of ornithine aminotransferase degradation (0.68/day and 0.28/day in sham-hepatectomized and partially hepatectomized rats, respectively) was sufficient to account for the higher level of this protein 3 days after surgery in the latter group.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


2014 ◽  
Vol 59 (3) ◽  
pp. 1797-1801 ◽  
Author(s):  
Ryan K. Shields ◽  
M. Hong Nguyen ◽  
Brian A. Potoski ◽  
Ellen G. Press ◽  
Liang Chen ◽  
...  

ABSTRACTTreatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producingKlebsiella pneumoniaewere significantly more likely if both agents were inactivein vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a majorompK36porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134–135 GD], IS5promoter insertion [P= 0.007]) or a doripenem MIC of >8 μg/ml (P= 0.01). MajorompK36mutations among KPC-K. pneumoniaestrains are important determinants of carbapenem-colistin responsesin vitroandin vivo.


Sign in / Sign up

Export Citation Format

Share Document