scholarly journals Lysine carbamylation for enzymatic function: metal and structural requirements

2014 ◽  
Vol 70 (a1) ◽  
pp. C301-C301
Author(s):  
Yin-Cheng Hsieh ◽  
Sunney Chan ◽  
Yuh-Shyong Yang ◽  
Chun-Jung Chen

Lysine carbamylation, a post-translational modification, facilitates metal coordination for specific enzymatic activities. Carbamylation on lysine extends the residue length by ~2 Å and changes the side chain from a positive to negative charge at neutral pH. The proteins involved with lysine carbamylation are found to be related to the human diseases, such as type 2 diabetes, developmental delay, metabolic acidosis, mental retardation, hypotonia and seizures. We have determined structures of the vertebrate dihydropyrimidinase from Tetraodon nigroviridis (TnDhp) in various states: the apo enzyme as well as two forms of the holo enzyme with one and two metals at the catalytic site. The essential active-site structural requirements have been identified with possible existence of four metal-mediated stages of lysine carbamylation. Only one metal is sufficient for stabilizing lysine carbamylation; however, the post-translational lysine carbamylation facilitates additional metal coordination for the regulation of specific enzymatic activities through controlling the conformations of two dynamic loops, Ala69–Arg74 and Met158–Met165, located in the tunnel for the substrate entrance. The substrate/product tunnel is in the "open form" in the apo-TnDhp, in the "intermediate state" in the mono-metal TnDhp, and in the "closed form" in the di-metal TnDhp structure, respectively. Structural comparison also suggests that the C-terminal tail plays a role in the enzymatic function through interactions with the Ala69–Arg74 dynamic loop. In addition, the structures of the di-metal TnDhp in complexes with hydantoin, N-carbamyl-β-alanine and N-carbamyl-β-amino isobutyrate, as well as apo-TnDhp in complex with a product analog, N-(2-acetamido)-iminodiacetic acid, have been determined. These structural results illustrate how a protein exploits unique lysines and the metal distribution to accomplish lysine carbamylation as well as subsequent enzymatic functions.

1994 ◽  
Vol 300 (1) ◽  
pp. 75-79 ◽  
Author(s):  
G Tschank ◽  
J Sanders ◽  
K H Baringhaus ◽  
F Dallacker ◽  
K I Kivirikko ◽  
...  

The ability of structural analogues of ascorbate to serve as substitutes for this reducing agent in the prolyl 4-hydroxylase reaction was studied. In experiments using the purified enzyme, variations of the compounds′ side chain were compatible with co-substrate activity. The presence of very large hydrophobic substituents or a positively charged group caused an increase in the observed Km values. A negative charge and smaller modifications did not change the affinity to the enzyme when compared with L-ascorbate. 6-Bromo-6-deoxy-L-ascorbate had a lower Km than the physiological reductant. Substitution at the -OH group in ring position 3 prevented binding to the enzyme. The same pattern of activity was observed when the full and uncoupled prolyl 4-hydroxylase reactions were studied. The Vmax. values with all compounds were similar. The reaction of microsomal prolyl 4-hydroxylase was supported by D-isoascorbate, O6-tosyl-L-ascorbate and 5-deoxy-L-ascorbate, giving the same dose-response behaviour as L-ascorbate itself. Again, 6-bromo-6-deoxy-L-ascorbate gave a lower Km and a similar Vmax. value. L-Ascorbic acid 6-carboxylate produced substrate inhibition at concentrations above 0.3 mM. The Km and Vmax. values calculated from concentrations up to 0.2 mM were similar to those of L-ascorbate. The enzyme activity observed with 6-amino-6-deoxy-L-ascorbate was very low in the microsomal hydroxylation system. The calculated Vmax. value was lower than that of L-ascorbate, suggesting a restriction of the access of this compound to the enzyme.


2004 ◽  
Vol 385 (12) ◽  
pp. 1171-1175 ◽  
Author(s):  
Zhan-Yun Guo ◽  
Xiao-Yuan Jia ◽  
You-Min Feng

Abstract Insulin contains three disulfide bonds, one intrachain bond, A6–A11, and two interchain bonds, A7–B7 and A20–B19. Site-directed mutagenesis results (the two cysteine residues of disulfide A7–B7 were replaced by serine) showed that disulfide A7–B7 is crucial to both the structure and activity of insulin. However, chemical modification results showed that the insulin analogs still retained relatively high biological activity when A7Cys and B7Cys were modified by chemical groups with a negative charge. Did the negative charge of the modification groups restore the loss of activity and/or the disturbance of structure of these insulin analogs caused by deletion of disulfide A7–B7? To answer this question, an insulin analog with both A7Cys and B7Cys replaced by Glu, which has a long side-chain and a negative charge, was prepared by protein engineering, and its structure and activity were analyzed. Both the structure and activity of the present analog are very similar to that of the mutant with disulfide A7–B7 replaced by Ser, but significantly different from that of wild-type insulin. The present results suggest that removal of disulfide A7–B7 will result in serious loss of biological activity and the native conformation of insulin, even if the disulfide is replaced by residues with a negative charge.


1979 ◽  
Vol 90 (3) ◽  
pp. 490-504 ◽  
Author(s):  
D. R. Rovner ◽  
J. W. Conn ◽  
E. L. Cohen ◽  
F. G. Berlinger ◽  
D. C. Kern ◽  
...  

ABSTRACT We have studied the hormonal secretion and excretion patterns in a patient with the XX type of 17α-hydroxylase deficiency. In the untreated state, the patient's urine contained only those steroids which do not require 17-hydroxylation in their biosynthesis. Aldosterone was not produced in the patient and the metabolic product of its immediate precursor, 18-hydroxy-11-dehydro-tetrahydrocorticosterone, was excreted in markedly elevated amounts. This apparent complete block in 18 oxidation was reversible upon long-term ACTH suppression within 27 days. Direct in vitro incubation of the patient's adrenal gland removed at operation demonstrated, 1) the complete lack of 17α-hydroxylase activity, 2) the functional block in the ability to oxidize the hydroxyl group at the 18 methyl side chain. The addition of physiological concentrations of angiotensin to the incubation medium further showed, 3) angiotensin mildly stimulated the entire aldosterone biosynthetic pathway, 4) angiotensin directly stimulated the conversion of 18-hydroxycorticosterone to aldosterone. We propose that in this patient, 17-hydroxylase deficiency produced a decreased plasma concentration of cortisol, followed by stimulation of deoxycorticosterone production by ACTH. The resultant increase in extracellular fluid volume suppressed plasma renin activity. This resulted in a low plasma concentration of angiotensin II which directly suppressed oxidation of 18-hydroxycorticosterone to aldosterone. This defect has been called corticosterone methyl oxidase defect type 2.


2004 ◽  
Vol 82 (2) ◽  
pp. 275-284 ◽  
Author(s):  
Julia Xu ◽  
Mary A.A McRae ◽  
Scott Harron ◽  
Beatrice Rob ◽  
Reuben E Huber

The interactions between Na+ (and K+) and Asp-201 of β-galactosidase were studied. Analysis of the changes in Km and Vmax showed that the Kd for Na+ of wild type β-galactosidase (0.36 ± 0.09 mM) was about 10× lower than for K+ (3.9 ± 0.6 mM). The difference is probably because of the size and other physical properties of the ions and the binding pocket. Decreases of Km as functions of Na+ and K+ for oNPG and pNPG and decreases of the Ki of both shallow and deep mode inhibitors were similar, whereas the Km and Ki of substrates and inhibitors without C6 hydroxyls remained constant. Thus, Na+ and K+ are important for binding galactosyl moieties via the C6 hydroxyl throughout catalysis. Na+ and K+ had lesser effects on the Vmax. The Vmax of pNPF and pNPA (substrates that lack a C6 hydroxyl) did not change upon addition of Na+ or K+, showing that the catalytic effects are also mediated via the C6 hydroxyl. Arrhenius plots indicated that Na+, but not K+, caused k3 (degalactosylation) to increase. Na+ also caused the k2 (galactosylation) with oNPG, but not with pNPG, to increase. In contrast, K+ caused the k2 values with both oNPG and pNPG to increase. Na+ and K+ mainly altered the entropies of activation of k2 and k3 with only small effects on the enthalpies of activation. This strongly suggests that only the positioning of the substrate, transition states, and covalent intermediate are altered by Na+ and K+. Further evidence that positioning is important was that substitution of Asp-201 with a Glu caused the Km and Ki values to increase significantly. In addition, the Kd values for Na+ or K+ were 5 to 8 fold higher. The negative charge of Asp-201 was shown to be vital for Na+ and K+ binding. Large amounts of Na+ or K+ had no effect on the very large Km and Ki values of D201N-β-galactosidase and the Vmax values changed minimally and in a linear rather than hyperbolic way. D201F-β-galactosidase, with a very bulky hydrophobic side chain in place of Asp, essentially obliterated all binding and catalysis.Key words: β-galactosidase, sodium, potassium, binding, aspartic acid.


1995 ◽  
Vol 105 (1) ◽  
pp. 21-47 ◽  
Author(s):  
M L Jennings

One of the modes of action of the red blood cell anion transport protein is the electrically silent net exchange of 1 Cl- for 1 SO4= and 1 H+. Net SO4(=)-Cl- exchange is accelerated by low pH or by conversion of the side chain of glutamate 681 into an alcohol by treatment of intact cells with Woodward's reagent K (WRK) and BH4-. The studies described here were performed to characterize the electrical properties of net SO4(=)-Cl- exchange in cells modified with WRK/BH4-. The SO4= conductance measured in 100 mM SO4= medium is smaller in modified cells than in control cells. However, the efflux of [35S] SO4= into a 150-mM KCl medium is 80-fold larger in modified cells than in control cells and is inhibited 99% by 10 microM H2DIDS. No detectable H+ flux is associated with SO4(=)-Cl- exchange in modified cells. In the presence of gramicidin to increase the cation permeability, the stoichiometry of SO4(=)-Cl- exchange is not distinguishable from 1:1. In modified cells loaded with SO4=, the valinomycin-mediated efflux of 86Rb+ into an Na-gluconate medium is immediately stimulated by the addition of 5 mM extracellular Cl-. Therefore, SO4(=)-Cl- exchange in modified cells causes an outward movement of negative charge, as expected for an obligatory 1:1 SO4(=)-Cl- exchange. This is the first example of an obligatory, electrogenic exchange process in band 3 and demonstrates that the coupling between influx and efflux does not require that the overall exchange be electrically neutral. The effects of membrane potential on SO4(=)-SO4= exchange and SO4(=)-Cl- exchange in modified cells are consistent with a model in which nearly a full net positive charge moves inward through the transmembrane field during the inward Cl- translocation event, and a small net negative charge moves with SO4= during the SO4= translocation event. This result suggests that, in normal cells, the negative charge on Glu 681 traverses most of the transmembrane electric field, accompanied by Cl- and the equivalent of two protein-bound positive charges.


2020 ◽  
Vol 21 (8) ◽  
pp. 2882 ◽  
Author(s):  
Grazyna Leszczynska ◽  
Marek Cypryk ◽  
Bartlomiej Gostynski ◽  
Klaudia Sadowska ◽  
Paulina Herman ◽  
...  

5-Substituted 2-selenouridines (R5Se2U) are post-transcriptional modifications present in the first anticodon position of transfer RNA. Their functional role in the regulation of gene expression is elusive. Here, we present efficient syntheses of 5-methylaminomethyl-2-selenouridine (1, mnm5Se2U), 5-carboxymethylaminomethyl-2-selenouridine (2, cmnm5Se2U), and Se2U (3) alongside the crystal structure of the latter nucleoside. By using pH-dependent potentiometric titration, pKa values for the N3H groups of 1–3 were assessed to be significantly lower compared to their 2-thio- and 2-oxo-congeners. At physiological conditions (pH 7.4), Se2-uridines 1 and 2 preferentially adopted the zwitterionic form (ZI, ca. 90%), with the positive charge located at the amino alkyl side chain and the negative charge at the Se2-N3-O4 edge. As shown by density functional theory (DFT) calculations, this ZI form efficiently bound to guanine, forming the so-called “new wobble base pair”, which was accepted by the ribosome architecture. These data suggest that the tRNA anticodons with wobble R5Se2Us may preferentially read the 5′-NNG-3′ synonymous codons, unlike their 2-thio- and 2-oxo-precursors, which preferentially read the 5′-NNA-3′ codons. Thus, the interplay between the levels of U-, S2U- and Se2U-tRNA may have a dominant role in the epitranscriptomic regulation of gene expression via reading of the synonymous 3′-A- and 3′-G-ending codons.


1972 ◽  
Vol 136 (2) ◽  
pp. 387-391 ◽  
Author(s):  
Sefik S. Alkan ◽  
Maurice E. Bush ◽  
Danute E. Nitecki ◽  
Joel W. Goodman

The low molecular weight compound L-tyrosine-azobenzenearsonate (RAT) induces a cellular immune response in guinea pigs. The contribution of the side chain of tyrosine to the immunogenicity of RAT and the structural requirements at that position for immunogenicity were assessed by synthesizing a series of analogs of RAT containing modifications in the side chain of tyrosine and employing them as immunogens. Removal of either the carboxyl or amino group did not markedly affect immunogenicity, measured by the induction of delayed cutaneous sensitivity, whereas deletion of both completely abolished it. However, a charged group was not required since side chains containing a polar hydroxyl group could substitute for chains bearing an amino or carboxyl group. The size of the side chain exerted a pronounced influence; the charged or polar substituent had to be extended from the phenolic ring by at least two carbon atoms in order to confer immunogenicity.


2016 ◽  
Vol 147 (2) ◽  
pp. 137-152 ◽  
Author(s):  
Franklin M. Mullins ◽  
Michelle Yen ◽  
Richard S. Lewis

Ca2+ entry through CRAC channels causes fast Ca2+-dependent inactivation (CDI). Previous mutagenesis studies have implicated Orai1 residues W76 and Y80 in CDI through their role in binding calmodulin (CaM), in agreement with the crystal structure of Ca2+–CaM bound to an Orai1 N-terminal peptide. However, a subsequent Drosophila melanogaster Orai crystal structure raises concerns about this model, as the side chains of W76 and Y80 are predicted to face the pore lumen and create a steric clash between bound CaM and other Orai1 pore helices. We further tested the functional role of CaM using several dominant-negative CaM mutants, none of which affected CDI. Given this evidence against a role for pretethered CaM, we altered side-chain volume and charge at the Y80 and W76 positions to better understand their roles in CDI. Small side chain volume had different effects at the two positions: it accelerated CDI at position Y80 but reduced the extent of CDI at position W76. Positive charges at Y80 and W76 permitted partial CDI with accelerated kinetics, whereas introducing negative charge at any of five consecutive pore-lining residues (W76, Y80, R83, K87, or R91) completely eliminated CDI. Noise analysis of Orai1 Y80E and Y80K currents indicated that reductions in CDI for these mutations could not be accounted for by changes in unitary current or open probability. The sensitivity of CDI to negative charge introduced into the pore suggested a possible role for anion binding in the pore. However, although Cl− modulated the kinetics and extent of CDI, we found no evidence that CDI requires any single diffusible cytosolic anion. Together, our results argue against a CDI mechanism involving CaM binding to W76 and Y80, and instead support a model in which Orai1 residues Y80 and W76 enable conformational changes within the pore, leading to CRAC channel inactivation.


Sign in / Sign up

Export Citation Format

Share Document