scholarly journals Direct Visualization of Energy-transferred Excited State in Eu Complex

2014 ◽  
Vol 70 (a1) ◽  
pp. C102-C102 ◽  
Author(s):  
Kunihisa Sugimoto ◽  
Akihiko Fujiwara ◽  
Masaki Takata ◽  
Hiroshi Tanaka ◽  
Miki Hasegawa

Highly luminescent lanthanide (Ln) complexes have attracted much attention because Ln3+ions show long-lived ff-emissions with narrow band shape. Their unique photo-optical properties are promising for the design of light-emitting materials and sensing devices. Although the ff-emissions are essentially weak because of Laporte forbidden, chelate ligands is effective to strengthen the intramolecular energy transfer from photo-excited organic ligands to Ln3+ions. The direct evidence of energy transfer from ligands to Ln3+and details of excited state, however, are still veiled. Here, we report direct visualization of energy-transferred excited state in Eu complex with a hexadentate ligand (L) consisting of two bipyridine moieties bridged by an ethylendiamine unit, [Eu3+(L)(NO3)2](PF6) (Eu(L))[1] by Maximum Entropy Method (MEM) charge density[2] and electrostatic potential analysis[3] based on SR X-ray diffraction. First, we confirmed that the electron numbers of Eu and ligand L in the excited state are the same as those in the ground state, which is a direct evidence of energy transfer instead of charge transfer. Next, we observed charge re-distribution in the Eu ion and the ligand L. The electrostatic potential distributions calculated using MEM charge density give an experimental evidence for the existence of polarization of ligand L both in the ground and photo-excited states. The orientation polarization in the ground state changed during pumping at 315 nm, and the charge re-distribution are qualitatively consistent with a theoretical prediction. This characteristic luminescence behavior based on the energy relaxation process have not been detected by fundamental crystal structural analysis. We have succeeded in visualization of subtle but important change due to energy transfer in the mononuclear Europium complex with hexadentate ligand at the first time.

1998 ◽  
Vol 102 (47) ◽  
pp. 9426-9436 ◽  
Author(s):  
Sung Ik Yang ◽  
Robin K. Lammi ◽  
Jyoti Seth ◽  
Jennifer A. Riggs ◽  
Toru Arai ◽  
...  

The flash photolysis of nitrosyl chloride and nitrosyl bromide has been studied under isothermal conditions. Vibrationally excited nitric oxide molecules were produced and all levels from v " = 0 to v " = 11 were observed in absorption from the ground electronic states in the β, γ, δ and Є systems. Some of these bands have not previously been reported. The mechanism of the production is either directly NO R + hv → NO ( X 2 II , v ≤ 11) + R ( 2 P ), or by the sequence which includes the reactions NO R + hv → NO( 4 II ) + R , NO. 4 II + M → NO ( X 2 II , v > 0) + M In the latter case, the 4 II state of NO lies not more than 3·5 eV above the ground state. Other possible mechanisms and models accounting for the direct production of vibrationally excited NO in its ground electronic states are discussed. By flashing chlorine in the presence of NOCl it was shown that the reaction Cl + NOCl → Cl 2 + NO ( v > 0) does not occur, thus providing direct evidence that in reactions of the type A + BCD → AB + CD only the AB molecule containing the newly formed bond can be vibrationally excited. Vibrational relaxation is very rapid and probably occurs by step-wise degradation involving resonance vibrational energy transfer. NOCl and NOBr are very efficient and with NO itself the reaction NO ( v = n ) + NO ( v = 0) → NO ( v = n -1) + NO ( v = 1) can be followed.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
S. Ritchie ◽  
J. C. Bennett ◽  
A. Prodan ◽  
F.W. Boswell ◽  
J.M. Corbett

A continuous sequence of compounds having composition NbxTa1-xTe4; 0 ≤ x ≤ 1 have been studied by electron diffraction and microscopy. Previous studies have shown that the end members of the series, TaTε4 and NbTε4 possess a quasi-one-dimensional character and exhibit charge density wave (CDW) distortions. In these compounds, the subcell structure is tetragonal with axes (a × a × c) and consists of the metal atoms (Nb or Ta) centered within an extended antiprismatic cage of Te atoms. At room temperature, TaTε4 has a commensurate modulation structure with a 2a × 2a × 3c unit cell. In NbTε4, an incommensurate modulation with × ∼ 16c axes is observed. Preliminary studies of the mixed compounds NbxTα1-xTε4 showed a discontinuous jump of the modulation wave vector commensurate to incommensurate when the Nb dopant concentration x, exceeded x ≃ 0.3, In this paper, the nature of the compositional dependence of is studied in greater detail and evidence is presented for a stepwise variation of . This constitutes the first direct evidence for a Devil's staircase in CDW materials.


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

2020 ◽  
Author(s):  
Tomislav Rovis ◽  
Benjamin D. Ravetz ◽  
Nicholas E. S. Tay ◽  
Candice Joe ◽  
Melda Sezen-Edmonds ◽  
...  

We describe a new family of catalysts that undergo direct ground state singlet to excited state triplet excitation with IR light, leading to photoredox catalysis without the energy waste associated with intersystem crossing. The finding allows a mole scale reaction in batch using infrared irradiation.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


Author(s):  
Gourab Das ◽  
Sandeep Cherumukkil ◽  
Akhil Padmakumar ◽  
Vijay B. Banakar ◽  
Vakayil K. Praveen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document