Crystal structure of PhoU fromPseudomonas aeruginosa, a negative regulator of the Pho regulon

2015 ◽  
Vol 71 (a1) ◽  
pp. s231-s231
Author(s):  
Sang Jae Lee ◽  
Bong-Jin Lee ◽  
Se Won Suh
2014 ◽  
Vol 188 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Sang Jae Lee ◽  
Ye Seol Park ◽  
Soon-Jong Kim ◽  
Bong-Jin Lee ◽  
Se Won Suh

2011 ◽  
Vol 79 (6) ◽  
pp. 1999-2003 ◽  
Author(s):  
Chunju An ◽  
Scott Lovell ◽  
Michael R. Kanost ◽  
Kevin P. Battaile ◽  
Kristin Michel

2008 ◽  
Vol 75 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Christopher D. Rice ◽  
Jacob E. Pollard ◽  
Zachery T. Lewis ◽  
William R. McCleary

ABSTRACT Expression of the Pho regulon in Escherichia coli is induced in response to low levels of environmental phosphate (Pi). Under these conditions, the high-affinity PstSCAB2 protein (i.e., with two PstB proteins) is the primary Pi transporter. Expression from the pstSCAB-phoU operon is regulated by the PhoB/PhoR two-component regulatory system. PhoU is a negative regulator of the Pho regulon; however, the mechanism by which PhoU accomplishes this is currently unknown. Genetic studies of phoU have proven to be difficult because deletion of the phoU gene leads to a severe growth defect and creates strong selection for compensatory mutations resulting in confounding data. To overcome the instability of phoU deletions, we employed a promoter-swapping technique that places expression of the phoBR two-component system under control of the Ptac promoter and the lacO ID regulatory module. This technique may be generally applicable for controlling expression of other chromosomal genes in E. coli. Here we utilized PphoB ::Ptac and PpstS ::Ptac strains to characterize phenotypes resulting from various ΔphoU mutations. Our results indicate that PhoU controls the activity of the PstSCAB2 transporter, as well as its abundance within the cell. In addition, we used the PphoB ::Ptac ΔphoU strain as a platform to begin characterizing new phoU mutations in plasmids.


2003 ◽  
Vol 185 (1) ◽  
pp. 262-273 ◽  
Author(s):  
Yinghua Chen ◽  
Catherine Birck ◽  
Jean-Pierre Samama ◽  
F. Marion Hulett

ABSTRACT Bacillus subtilis PhoP is a member of the OmpR/PhoB family of response regulators that is directly required for transcriptional activation or repression of Pho regulon genes in conditions under which Pi is growth limiting. Characterization of the PhoP protein has established that phosphorylation of the protein is not essential for PhoP dimerization or DNA binding but is essential for transcriptional regulation of Pho regulon genes. DNA footprinting studies of PhoP-regulated promoters showed that there was cooperative binding between PhoP dimers at PhoP-activated promoters and/or extensive PhoP oligomerization 3′ of PhoP-binding consensus repeats in PhoP-repressed promoters. The crystal structure of PhoPN described in the accompanying paper revealed that the dimer interface between two PhoP monomers involves nonidentical surfaces such that each monomer in a dimer retains a second surface that is available for further oligomerization. A salt bridge between R113 on one monomer and D60 on another monomer was judged to be of major importance in the protein-protein interaction. We describe the consequences of mutation of the PhoP R113 codon to a glutamate or alanine codon and mutation of the PhoP D60 codon to a lysine codon. In vivo expression of either PhoPR113E, PhoPR113A, or PhoPD60K resulted in a Pho-negative phenotype. In vitro analysis showed that PhoPR113E was phosphorylated by PhoR (the cognate histidine kinase) but was unable to dimerize. Monomeric PhoPR113E∼P was deficient in DNA binding, contributing to the PhoPR113E in vivo Pho-negative phenotype. While previous studies emphasized that phosphorylation was essential for PhoP function, data reported here indicate that phosphorylation is not sufficient as PhoP dimerization or oligomerization is also essential. Our data support the physiological relevance of the residues of the asymmetric dimer interface in PhoP dimerization and function.


2009 ◽  
Vol 74 (3) ◽  
pp. 794-798 ◽  
Author(s):  
Shuisong Ni ◽  
Matthew M. Benning ◽  
Matthew J. Smola ◽  
Erik A. Feldmann ◽  
Michael A. Kennedy

2010 ◽  
Vol 285 (40) ◽  
pp. 30615-30621 ◽  
Author(s):  
Vessela Petrova ◽  
Kenneth A. Satyshur ◽  
Nicholas P. George ◽  
Darrell McCaslin ◽  
Michael M. Cox ◽  
...  

Microbiology ◽  
2004 ◽  
Vol 150 (9) ◽  
pp. 2985-2992 ◽  
Author(s):  
Natalia Pasternak Taschner ◽  
Ezra Yagil ◽  
Beny Spira

The RNA polymerase core associated with σ S transcribes many genes related to stress or to the stationary phase. When cells enter a phase of phosphate starvation, the transcription of several genes and operons, collectively known as the PHO regulon, is strongly induced. The promoters of the PHO genes hitherto analysed are recognized by σ D-associated RNA polymerase. A mutation in the gene that encodes σ S, rpoS, significantly increases the level of alkaline phosphatase activity and the overproduction of σ S inhibits it. Other PHO genes such as phoE and ugpB are likewise affected by σ S. In contrast, pstS, which encodes a periplasmic phosphate-binding protein and is a negative regulator of PHO, is stimulated by σ S. The effect of σ S on the PHO genes is at the transcriptional level. It is shown that a cytosine residue at position −13 is important for the positive effect of σ S on pst. The interpretation of these observations is based on the competition between σ S and σ D for the binding to the core RNA polymerase.


2021 ◽  
Author(s):  
Simon Ng ◽  
Alexander Brueckner ◽  
Soheila Bahmanjah ◽  
Qiaolin Deng ◽  
Jennifer Johnston ◽  
...  

STIP1 homology and U-Box containing protein 1 (STUB1) plays a key role in maintaining cell health during stress and aging. Recent evidence suggested STUB1 also helps regulate immunity with the potential of clearing malignant cells. Indeed, we and others have shown that STUB1 is a pivotal negative regulator of interferon gamma sensing – a process critical to the immunosurveillance of tumors and pathogens. Thus far, investigation of STUB1’s role relies mostly on genetic approaches as pharmacological inhibitors of this protein are lacking. Identification of a STUB1 tool compound is important as it would allow therapeutically relevant target validation in a broader sense. Accordingly, we leveraged phage display and computational modeling to identify and refine STUB1 binders. Screening of >10E9 macrocyclic peptides resulted in several conserved motifs as well as structurally diverse leads. Co-crystal structure of the peptide hit and STUB1 has enabled us to employ structure-based in silico design for further optimization. Of the modifications employed, replacing the hydrophilic solvent-exposed region of the macrocyclic peptides with a hydrophobic scaffold improved cellular permeability, while the binding conformation was maintained. Further substitution of the permeability-limiting terminal aspartic acid with a tetrazole bioisostere retained the binding to certain extent while improving permeability, suggesting a path forward. The current lead, although not optimal for cellular study, provides a valuable template for further development into selective tool compounds for STUB1 to enable target validation.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Sign in / Sign up

Export Citation Format

Share Document