scholarly journals Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

Author(s):  
Atef Arfan ◽  
Mwaffak Rukiah

Crotonaldehyde semicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-ylidene]hydrazinecarboxamide}, C5H9N3O, (I), and crotonaldehyde thiosemicarbazone {systematic name: (E)-2-[(E)-but-2-en-1-yldene]hydrazinecarbothioamide}, C5H9N3S, (II), show the sameEconformation around the imine C=N bond. Compounds (I) and (II) were obtained by the condensation of crotonaldehyde with semicarbazide hydrochloride and thiosemicarbazide, respectively. Each molecule has an intramolecular N—H...N hydrogen bond, which generates anS(5) ring. In (I), the crotonaldehyde fragment is twisted by 2.59 (5)° from the semicarbazide mean plane, while in (II) the corresponding angle (with the thiosemicarbazide mean plane) is 9.12 (5)°. The crystal packing is different in the two compounds: in (I) intermolecular N—H...O hydrogen bonds link the molecules into layers parallel to thebcplane, while weak intermolecular N—H...S hydrogen bonds in (II) link the molecules into chains propagating in [110].

2013 ◽  
Vol 69 (12) ◽  
pp. 1549-1552 ◽  
Author(s):  
Vladimir V. Chernyshev ◽  
Sergey Y. Efimov ◽  
Ksenia A. Paseshnichenko ◽  
Andrey A. Shiryaev

The title salt, C8H12NO+·C7H10NO5−, crystallizes in two polymorphic modifications,viz.monoclinic (M) and orthorhombic (O). The crystal structures of both polymorphic modifications have been established from laboratory powder diffraction data. The crystal packing motifs in the two polymorphs are different, but the conformations of the anions are generally similar. InM, the anions are linked by pairs of hydrogen bonds of the N—H...O and O—H...O types into chains along theb-axis direction, and neighbouring molecules within the chain are related by the 21screw axis. The cations link these chainsviaO—H...O and N—H...O hydrogen bonds into layers parallel to (001). InO, the anions are linked by O—H...O hydrogen bonds into helices along [001], and neighbouring molecules within the helix are related by the 21screw axis. The neighbouring helical turns are linked by N—H...O hydrogen bonds. The cations link the helicesviaO—H...O and N—H...O hydrogen bonds, thus forming a three-dimensional network.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


2012 ◽  
Vol 194 ◽  
pp. 5-9 ◽  
Author(s):  
Yuriy Verbovytskyy ◽  
Antonio Pereira Gonçalves

Seven new ternary RZn1+xGa3-x (R = Ce, Pr, Nd, Sm, Ho and Er) and R5Zn2Ga17 (R = Ce) phases are synthesized for the first time. Their crystal structures are solved on basis of X-ray powder diffraction data. The above mentioned compounds belong to the BaAl4 (space group I4/mmm) and Rb5Hg19 (space group I4/m) structure types. Details of the structure of the Ce5Zn2Ga17 compound and relationship with RZn2-xGa2+x (BaAl4 type) and R3Zn8-xGa3+x (La3Al11 type) are briefly discussed.


Author(s):  
Robert A. Toro ◽  
Analio Dugarte-Dugarte ◽  
Jacco van de Streek ◽  
José Antonio Henao ◽  
José Miguel Delgado ◽  
...  

The structure of racemic (RS)-trichlormethiazide [systematic name: (RS)-6-chloro-3-(dichloromethyl)-1,1-dioxo-3,4-dihydro-2H-1λ6,2,4-benzothiadiazine-7-sulfonamide], C8H8Cl3N3O4S2 (RS-TCMZ), a diuretic drug used in the treatment of oedema and hypertension, was determined from laboratory X-ray powder diffraction data using DASH [David et al. (2006). J. Appl. Cryst. 39, 910–915.], refined by the Rietveld method with TOPAS-Academic [Coelho (2018). J. Appl. Cryst. 51, 210–218], and optimized using DFT-D calculations. The extended structure consists of head-to-tail dimers connected by π–π interactions which, in turn, are connected by C—Cl...π interactions. They form chains propagating along [101], further connected by N—H...O hydrogen bonds to produce layers parallel to the ac plane that stack along the b-axis direction, connected by additional N—H...O hydrogen bonds. The Hirshfeld surface analysis indicates a major contribution of H...O and H...Cl interactions (32.2 and 21.7%, respectively). Energy framework calculations confirm the major contribution of electrostatic interactions (E elec) to the total energy (E tot). A comparison with the structure of S-TCMZ is also presented.


Author(s):  
Michel Fleck ◽  
Ekkehart Tillmanns ◽  
Ladislav Bohatý ◽  
Peter Held

AbstractThe crystal structures of eight different L-malates have been determined and refined from single-crystal X-ray diffraction data. The compounds are the monoclinic (space groupIn addition, for all the compounds, powder diffraction data were collected, analysed and submitted to the powder diffraction file (PDF).


1998 ◽  
Vol 54 (5) ◽  
pp. 531-546 ◽  
Author(s):  
J. G. Thompson ◽  
R. L. Withers ◽  
A. Melnitchenko ◽  
S. R. Palethorpe

The crystal structures of five new cristobalite-related sodium aluminosilicates with four different structure types from the system Na2−x Al2−x Si x O4, 0 ≤ x ≤ 1 [Na1.95Al1.95Si0.05O4, P41212, a = 5.2997 (6), c = 7.0758 (9) Å; Na1.75Al1.75Si0.25O4, Pbca, a = 10.4221 (11), b = 14.264 (3), c = 5.2110 (5) Å; Na1.65Al1.65Si0.35O4, P41212, a = 10.3872 (7), c = 7.1589 (8) Å; Na1.55Al1.55Si0.45O4, Pbca, a = 10.385 (1), b = 14.198 (3), c = 5.1925 (6) Å; Na1.15Al1.15Si0.85O4, Pb21 a, a = 10.214 (2), b = 14.226 (7), c = 10.308 (1) Å], have been refined by the Rietveld method from X-ray powder diffraction data. Plausible starting models were derived for the x = 0.05, 0.25 and 0.45 structures by analogy. Starting models for the x = 0.35 and 0.85 structures, with previously unreported structure types, were derived from a modulation wave approach based on distortion of the ideal C9 structure type and assuming regular SiO4 and AlO4 tetrahedra.


Sign in / Sign up

Export Citation Format

Share Document