Adhesive bonding of car body parts by industrial robot

Author(s):  
John Mortimer
2015 ◽  
Vol 818 ◽  
pp. 23-26
Author(s):  
Michaela Kolnerová ◽  
Jiří Sobotka ◽  
Pavel Solfronk ◽  
Lukáš Zuzánek

The paper deals with the application possibilities of new coatings types on the basis of Zn/Mg and their utilization at car-body production Comparison is done by evaluation bonded joints strength acc. to ISO 11339 for commonly used zinc-coated sheet at production car-body stampings (HDG Z100) with layer of new type on the basis of zinc/magnesium (ZM). Such utilization of new materials also means necessity to carry out test of the individual bonded car-body parts utility properties, mainly at peel loading, in dependence on adhesive type simultaneously with regard to the lubricant which is used in the technological process drawing of stampings and temperature under which is joint loaded. To guarantee required joints quality is one of the crucial criterions for applications new types of coatings in mass production.


2015 ◽  
Vol 639 ◽  
pp. 21-30 ◽  
Author(s):  
Stephan Purr ◽  
Josef Meinhardt ◽  
Arnulf Lipp ◽  
Axel Werner ◽  
Martin Ostermair ◽  
...  

Data-driven quality evaluation in the stamping process of car body parts is quite promising because dependencies in the process have not yet been sufficiently researched. However, the application of data mining methods for the process in stamping plants would require a large number of sample data sets. Today, acquiring these data represents a major challenge, because the necessary data are inadequately measured, recorded or stored. Thus, the preconditions for the sample data acquisition must first be created before being able to investigate any correlations. In addition, the process conditions change over time due to wear mechanisms. Therefore, the results do not remain valid and a constant data acquisition is required. In this publication, the current situation in stamping plants regarding the process robustness will be first discussed and the need for data-driven methods will be shown. Subsequently, the state of technology regarding the possibility of collecting the sample data sets for quality analysis in producing car body parts will be researched. At the end of this work, an overview will be provided concerning how this data collection was implemented at BMW as well as what kind of potential can be expected.


Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 435 ◽  
Author(s):  
Peter Mulidrán ◽  
Marek Šiser ◽  
Ján Slota ◽  
Emil Spišák ◽  
Tomáš Sleziak

2016 ◽  
Vol 228 ◽  
pp. 59-67 ◽  
Author(s):  
Paul Hippchen ◽  
Arnulf Lipp ◽  
Hannes Grass ◽  
Philipp Craighero ◽  
Michael Fleischer ◽  
...  

2015 ◽  
Vol 669 ◽  
pp. 167-175
Author(s):  
Michaela Kolnerová ◽  
Jiří Sobotka ◽  
Pavel Solfronk

The paper deals with the monitoring of utility properties of new coating type on the basis of Zn/Mg (ZM). For the comparison there was used commonly used coating in the series production of car-body panels on the basis of zinc (Z100). Measured results markedly contribute to improve production systems of car-body adhesion bonding on the basic of performed evaluation of applied coatings types utility properties quality with regard to influence of temperature and corrosion environment. Testing was carry out by T-peel test acc. to ISO 11339 when such type of loading represents crucial bonding fracture type. Thus results reveal information about behavior of adhesive joints strength properties together with the type of fracture as a criterion for suitable application of new coatings types on the basis of Zn/Mg and their implementation into series production of automobiles.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
André Albert ◽  
Wolfgang Zorn ◽  
Markus Layer ◽  
Welf-Guntram Drossel ◽  
Dirk Landgrebe ◽  
...  

The research on lightweight construction increasingly gains in importance, especially for the automotive industry. New lightweight components ensure the necessary stability of car body parts on the one hand. On the other hand they are supposed to allow a low priced production. Hence, aluminum or magnesium alloys have quite a large share in production engineering. During the last years, research mainly addressed metal/plastic compounds. Weight reduction as well as the capability of producing complex structures are only some of the benefits of this technology. Furthermore, additional functionality can be integrated or functional tasks can be distributed: The metal ensures stiffness and realizes the technical connection to the car body by means of welding, while the plastic enables the insertion of special elements for the joining or assembly process. This paper presents two approaches of realizing a combined process to produce aluminum/plastic-hybrid structures. In a first approach, an active tool is presented to realize the sheet based process. The second approach focusses on the tube-based process and presents the topical state of research within the Federal Cluster of Excellence EXC 1075 “Merge Technologies for Multifunctional Lightweight Structures”.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5871
Author(s):  
Gašper Škulj ◽  
Rok Vrabič ◽  
Primož Podržaj

Increasing the accessibility of collaborative robotics requires interfaces that support intuitive teleoperation. One possibility for an intuitive interface is offered by wearable systems that measure the operator’s movement and use the information for robot control. Such wearable systems should preserve the operator’s movement capabilities and, thus, their ability to flexibly operate in the workspace. This paper presents a novel wireless wearable system that uses only inertial measurement units (IMUs) to determine the orientation of the operator’s upper body parts. An algorithm was developed to transform the measured orientations to movement commands for an industrial collaborative robot. The algorithm includes a calibration procedure, which aligns the coordinate systems of all IMUs, the operator, and the robot, and the transformation of the operator’s relative hand motions to the movement of the robot’s end effector, which takes into account the operator’s orientation relative to the robot. The developed system is demonstrated with an example of an industrial application in which a workpiece needs to be inserted into a fixture. The robot’s motion is compared between the developed system and a standard robot controller. The results confirm that the developed system is intuitive, allows for flexible control, and is robust enough for use in industrial collaborative robotic applications.


Mechanik ◽  
2015 ◽  
pp. 567/779-567/788
Author(s):  
Jacek Stadnicki ◽  
Ireneusz Wróbel
Keyword(s):  
Car Body ◽  

Sign in / Sign up

Export Citation Format

Share Document