Nature and extent of population displacement due to climate change‐triggered disasters in the south‐western coastal region of Bangladesh

2011 ◽  
Vol 22 (5) ◽  
pp. 620-631 ◽  
Author(s):  
Salauddin ◽  
Ashikuzzaman
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Food Security ◽  
2021 ◽  
Author(s):  
Yukyan Lam ◽  
Peter J. Winch ◽  
Fosiul Alam Nizame ◽  
Elena T. Broaddus-Shea ◽  
Md. Golam Dostogir Harun ◽  
...  

AbstractThe rising salinity of land and water is an important, but understudied, climate change-sensitive trend that can exert devastating impacts on food security. This mixed methods investigation combines salinity testing with qualitative research methods to explore these impacts in one of the most salinity-affected regions in the world—the Ganges River Delta. Data collection in 2015 and 2016 undertaken in Bangladesh’s southwest coastal region and Dhaka consisted of 83 in-depth household and stakeholder interviews, six community focus groups, and salinity testing of 27 soil and 45 surface and groundwater samples. Results show that household food production is a multifaceted cornerstone of rural livelihood in the southwest coastal region, and virtually every component of it—from rice plantation and homestead gardening to livestock cultivation and aquaculture—is being negatively affected by salinity. Although households have attempted multiple strategies for adapting food production, effective adaptation remains elusive. At the community level, improved irrigation and floodplain management, as well as restrictions on saltwater aquaculture to abate salinity, are viewed as promising interventions. However, the potential of such measures remains unrealized on a broad scale, as they require a level of external resources and regulation not yet provided by the NGO and government sectors. This study elucidates issues of accessibility, equity, and governance surrounding agricultural interventions for climate change-related salinity adaptation, and its findings can help inform the community of organizations that will increasingly need to grapple with salinity in order to guarantee food security in the context of environmental change.


Author(s):  
Akira Hirano

AbstractImportant aspects for understanding the effects of climate change on tropical cyclones (TCs) are the frequency of TCs and their tracking patterns. Coastal areas are increasingly threatened by rising sea levels and associated storm surges brought on by TCs. Rice production in Myanmar relies strongly on low-lying coastal areas. This study aims to provide insights into the effects of global warming on TCs and the implications for sustainable development in vulnerable coastal areas in Myanmar. Using TC records from the International Best Track Archive for Climate Stewardship dataset during the 30-year period from 1983 to 2012, a hot spot analysis based on Getis-Ord (Gi*) statistics was conducted to identify the spatiotemporal patterns of TC tracks along the coast of Myanmar. The results revealed notable changes in some areas along the central to southern coasts during the study period. These included a considerable increase in TC tracks (p value < 0.01) near the Ayeyarwady Delta coast, otherwise known as “the rice bowl” of the nation. This finding aligns with trends in published studies and reinforced the observed trends with spatial statistics. With the intensification of TCs due to global warming, such a significant increase in TC experiences near the major rice-producing coastal region raises concerns about future agricultural sustainability.


2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Afonso Ferreira ◽  
Vanda Brotas ◽  
Carla Palma ◽  
Carlos Borges ◽  
Ana C. Brito

Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

&lt;p&gt;This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25&amp;#176; x 0.25&amp;#176; for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen&amp;#8217;s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22&amp;#176;C to 32&amp;#176;C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20&amp;#176;C to 33&amp;#176;C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document