3D modelling of a frame assembly using deep learning and the Chu–Liu–Edmonds Algorithm

2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hao Cao ◽  
Rong Mo ◽  
Neng Wan

Purpose The proposed method is to generate the 3 D model of frame assemblies based on their topological model automatedly. It was a very demanding task and there was no appropriate automated method to facilitate this work. Design/methodology/approach The proposed method includes two stages. The first stage is decisive. In this stage, a deep learning network and the Chu–Liu–Edmonds algorithm are used to recognize contact relations among parts. Based on this recognition, the authors perform a geometrical computation in the second stage to finalize the 3 D model. Findings The authors verify the feasibility of the proposed method using a case study and find that the classification rate of the deep learning network for part contact relations is higher than 75 per cent. Furthermore, more accurate results could be achieved with modification by the Chu–Liu–Edmonds algorithm. The proposed method has lower computational complexity compared with traditional heuristic methods, and its results are more consistent with existing designs. Research limitations/implications The paper introduces machine learning method into assembly modelling issue. The proposed method divides the assembly modelling into two steps and solves the assemble relation creatively. Practical implications Frame assemblies are fundamental to many areas. The proposed method could automate frame assembly modelling in a viable way. It could benefit design and manufacture process significantly. Originality/value The proposed method expands the application of machine learning into a new field. It would be more useful than simple machine learning in industry. The proposed method is better than general heuristic algorithms. It outputs identical results when the inputs are the same. Meanwhile, the algorithmic complexity in worst situation is better than general heuristic algorithms.

Author(s):  
Zainab Mushtaq

Abstract: Malware is routinely used for illegal reasons, and new malware variants are discovered every day. Computer vision in computer security is one of the most significant disciplines of research today, and it has witnessed tremendous growth in the preceding decade due to its efficacy. We employed research in machine-learning and deep-learning technology such as Logistic Regression, ANN, CNN, transfer learning on CNN, and LSTM to arrive at our conclusions. We have published analysis-based results from a range of categorization models in the literature. InceptionV3 was trained using a transfer learning technique, which yielded reasonable results when compared with other methods such as LSTM. On the test dataset, the transferring learning technique was about 98.76 percent accurate, while on the train dataset, it was around 99.6 percent accurate. Keywords: Malware, illegal activity, Deep learning, Network Security,


2019 ◽  
Vol 59 (1) ◽  
pp. 426
Author(s):  
James Lowell ◽  
Jacob Smith

The interpretation of key horizons on seismic data is an essential but time-consuming part of the subsurface workflow. This is compounded when surfaces need to be re-interpreted on variations of the same data, such as angle stacks, 4D data, or reprocessed data. Deep learning networks, which are a subset of machine learning, have the potential to automate this reinterpretation process, and significantly increase the efficiency of the subsurface workflow. This study investigates whether a deep learning network can learn from a single horizon interpretation in order to identify that event in a different version of the same data. The results were largely successful with the target horizon correctly identified in an alternative offset stack, and was correctly repositioned in areas where there was misalignment between the training data and the test data.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1156
Author(s):  
Kang Hee Lee ◽  
Sang Tae Choi ◽  
Guen Young Lee ◽  
You Jung Ha ◽  
Sang-Il Choi

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease of the sacroiliac joints. In this study, we develop a method for detecting bone marrow edema by magnetic resonance (MR) imaging of the sacroiliac joints and a deep-learning network. A total of 815 MR images of the sacroiliac joints were obtained from 60 patients diagnosed with axSpA and 19 healthy subjects. Gadolinium-enhanced fat-suppressed T1-weighted oblique coronal images were used for deep learning. Active sacroiliitis was defined as bone marrow edema, and the following processes were performed: setting the region of interest (ROI) and normalizing it to a size suitable for input to a deep-learning network, determining bone marrow edema using a convolutional-neural-network-based deep-learning network for individual MR images, and determining sacroiliac arthritis in subject examinations based on the classification results of individual MR images. About 70% of the patients and normal subjects were randomly selected for the training dataset, and the remaining 30% formed the test dataset. This process was repeated five times to calculate the average classification rate of the five-fold sets. The gradient-weighted class activation mapping method was used to validate the classification results. In the performance analysis of the ResNet18-based classification network for individual MR images, use of the ROI showed excellent detection performance of bone marrow edema with 93.55 ± 2.19% accuracy, 92.87 ± 1.27% recall, and 94.69 ± 3.03% precision. The overall performance was additionally improved using a median filter to reflect the context information. Finally, active sacroiliitis was diagnosed in individual subjects with 96.06 ± 2.83% accuracy, 100% recall, and 94.84 ± 3.73% precision. This is a pilot study to diagnose bone marrow edema by deep learning based on MR images, and the results suggest that MR analysis using deep learning can be a useful complementary means for clinicians to diagnose bone marrow edema.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2503
Author(s):  
Taro Suzuki ◽  
Yoshiharu Amano

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.


Sign in / Sign up

Export Citation Format

Share Document