scholarly journals Integrated design environment for reusable modular assembly systems

2019 ◽  
Vol 39 (4) ◽  
pp. 664-672
Author(s):  
Pedro Ferreira ◽  
Paul Danny Anandan ◽  
Ivo Pereira ◽  
Vikrant Hiwarkar ◽  
Mohmed Sayed ◽  
...  

Purpose This paper aims to provide a service-based integrated prototype framework for the design of reusable modular assembly systems (RMAS) incorporating reusability of equipment into the process. It extends AutomationML (AML) developments for an engineering data exchange to integrate and standardize the data formats that support the design of RMAS. Design/methodology/approach The approach provides a set of systematic procedures and support tools for the design of RMAS. This includes enhanced domain knowledge models that facilitate the interpretation and integration of information across the design phases. Findings The inclusion of reusability aspects in the design phase improves the sustainability of future assembly systems, by ensuring equipment use until its end-of-life. Moreover, the integrated support tools reduce the design time, while improving the quality/performance of the system design solution, as it enables the exploration of a larger solution space. This will result in a better response to dynamic and rapidly changing system requirements. Social implications This work provides a sustainable approach for the design of modular assembly systems (MAS), which will ensure better resource utilization. Additionally, the standardization of the data and the support of low cost tools is expected to benefit industrial companies, particularly the small- and medium-sized enterprises. Originality/value This approach offers a service-based platform which uses production data to incorporate reusability aspects into the design process of modular assembly system. Moreover, it provides a framework for modular assembly system design by extending the current design processes and interactions between stakeholders. To support this, a standardized method for information representation and exchange across the several phases of the RMAS design activity is briefly illustrated with an industrial case study.

Author(s):  
A. Bryan ◽  
S. J. Hu ◽  
Y. Koren

In order to gain competitive advantage, manufacturers require cost effective methods for developing a variety of products within short time periods. Product families, reconfigurable assembly systems and concurrent engineering are frequently used to achieve this desired cost effective and rapid supply of product variety. The independent development of methodologies for product family design and assembly system design has led to a sequential approach to the design of product families and assembly systems. However, the designs of product families and assembly systems are interdependent and efficiencies can be gained through their concurrent design. There are no quantitative concurrent engineering techniques that address the problem of the concurrent design of product families and assembly systems. In this paper, a non-linear integer programming formulation for the concurrent design of a product family and assembly system is introduced. The problem is solved with a genetic algorithm. An example is used to demonstrate the advantage of the concurrent approach to product family and assembly system design over the existing sequential methodology.


2017 ◽  
Vol 37 (4) ◽  
pp. 411-421 ◽  
Author(s):  
Luca Barbazza ◽  
Maurizio Faccio ◽  
Fabio Oscari ◽  
Giulio Rosati

Purpose This paper aims at analyzing different possible assembly systems, including innovative potential configurations such as the fully flexible assembly systems (FAS), by defining a novel analytical model that focuses on the concept of agility and its impact on the whole system performance, also evaluating the economic convenience in terms of the unit direct production cost. Design/methodology/approach The authors propose a comparison model derived by Newton’s second law, introducing a quantitative definition of agility (acceleration), resistance of an assembly system to any change of its operative state (inertia) and unit direct production cost (force). Different types of assembly systems (manual, flexible and fully FAS) are analyzed and compared using the proposed model, investigating agility, system inertia and their impact on the unit direct production cost. Findings The proposed agility definition and the proposed comparison model have been applied considering different sets of parameters as independent variables, such as the number of components to assemble (product model complexity) and the target throughput of the system. The main findings are a series of convenience areas which either, for a given target unit direct production cost (force), defines the most agile system to adopt or, for a given target agility (acceleration), defines the most economical system to adopt, as function of the independent variables. Originality/value The novelty of this work is, first, the analytical definition of agility applied to assembly systems and contextualized by means of the definition of the new comparison model. The comparison between different assembly systems on the basis of agility, and by using different sets of independent variables, is a further element of interest. Finally, the resulting convenience areas represent a desirable tool that could be used to optimally choose the most suitable assembly system according to one or more system parameters.


2020 ◽  
Vol 40 (3) ◽  
pp. 531-540
Author(s):  
Marco Bortolini ◽  
Maurizio Faccio ◽  
Francesco Gabriele Galizia ◽  
Mauro Gamberi ◽  
Francesco Pilati

Purpose Industry 4.0 emerged as the Fourth Industrial Revolution aiming at achieving higher levels of operational efficiency, productivity and automation. In this context, manual assembly systems are still characterized by high flexibility and low productivity, if compared to fully automated systems. Therefore, the purpose of this paper is to propose the design, engineering and testing of a prototypal adaptive automation assembly system, including greater levels of automation to complement the skills and capabilities of human workers. Design/methodology/approach A lab experimental field-test is presented comparing the assembly process of a full-scale industrial chiller with traditional and adaptive assembly system. Findings The analysis shows relevant benefits coming from the adoption of the adaptive automation assembly system. In particular, the main findings highlight improvements in the assembly cycle time and productivity, as well as reduction of the operator’s body movements. Practical implications The prototype is applied in an Italian mid-size industrial company, confirming its impact in terms of upgrades of the assembly system flexibility and productivity. Thus, the research study proposed in this paper provides valuable knowledge to support companies and industrial practitioners in the shift from traditional to advanced assembly systems matching current industrial and market features. Originality/value This paper expands the lacking research on adaptive automation assembly systems design proposing an innovative prototype able to real-time reconfigure its structure according to the product to work, e.g. work cycle, and the operator features.


2019 ◽  
Vol 39 (5) ◽  
pp. 803-812 ◽  
Author(s):  
Yicong Gao ◽  
Chuan He ◽  
Bing Zheng ◽  
Hao Zheng ◽  
Jianrong Tan

Purpose Complexity is the main challenge for present and future manufacturers. Assembly complexity heavily affects a product’s final quality in the fully automated assembly system. This paper aims to propose a new method to assess the complexity of modern automated assembly system at the assembly design stage with respect to the characteristics of both manufacturing system and each single component to be mounted. Aiming at validating the predictive model, a regression model is additionally presented to estimate the statistic relationship between the real assembly defect rate and predicted complexity of the fully automated assembly system. Design/methodology/approach The research herein extends the S. N. Samy and H. A. ElMaraghy’s model and seeks to redefine the predictive model using fuzzy evaluation against a fully automated assembly process at the assembly design stages. As the evaluation based on the deterministic scale with accurate crisp number can hardly reflect the uncertainty of the judgement, fuzzy linguistic variables are used to measure the interaction among influence factors. A dependency matrix is proposed to estimate the assembly complexity with respect to the interactions between mechanic design, electric design and process factors and main functions of assembly system. Furthermore, a complexity attributes matrix of single part is presented, to map the relationship between all individual parts to be mounted and three major factors mentioned in the dependency matrix. Findings The new proposed model presents a formal quantification to predict assembly complexity. It clarifies that how the attributes of assembly system and product components complicate the assembly process and in turn influence the manufacturing performance. A center bolt valve in the camshaft of continue variable valve timing is used to demonstrate the application of the developed methodology in this study. Originality/value This paper presents a developed method, which can be used to improve the design solution of assembly concept and optimize the process flow with the least complexity.


2014 ◽  
Vol 34 (1) ◽  
pp. 56-68 ◽  
Author(s):  
Emre Cevikcan

Purpose – It has become increasingly critical to design and maintain flexible and rapid assembly systems due to unpredictable and varying market conditions. The first stage of developing such systems is to restructure the existing assembly system. After designing the manufacturing system, efforts should be made for capacity adjustments to meet the demand in terms of allocating tasks to workers. Walking-worker assembly systems can be regarded as an effective method to achieve flexibility and agility via rabbit chase (RC) approach in which workers follow each other around the assembly cell or line and perform each task in sequence. In this paper, a novel mathematical programming approach is developed with the aim of integrating RC in assembly processes. Therefore, this study is thought to add value to industrial assembly systems in terms of effectively raising engineering control for task allocation activities. Design/methodology/approach – Two consecutive mathematical models are developed, since such a hierarchical approach provides computational convenience for the problem. The initial mathematical programming model determines the number of workers in each RC loop for each segment. In addition, the number of stations and the distribution of station times in the segments is essential. Therefore, the succeeding mathematical programming model generates stations in each segment and provides convenience for the workflow in RC loops. The output of mathematical programming models are the parameters of simulation model for performance assessment. Findings – The effectiveness of the proposed approach was validated by an application in a real-life chair production system. The application resulted in performance improvements for labour requirement (12.5 per cent) and production lead time (9.6 per cent) when compared to a classical assembly system design (CASD) where one stationary worker exists in each station. In addition, it is worth to note that RC leads to a reduced number of workers for a considerable number (39.4 per cent) of test problems. What is more, input as well as output factors have been determined via discriminant analysis and their impacts to the utilization of RC were analyzed for different levels. Practical implications – This study is thought to add value to the industry in terms of effectively providing convenience during production planning and task allocation in assembly lines and cells. Originality/value – To the best knowledge of the author, optimization models for RC considering a real industrial application have not yet been developed. In this context, this paper presents an approach which models RC by the use of mathematical programming in manual assembly processes to address this research gap. The contribution of the paper to the relevant literature is the development of hierarchical mixed integer linear programming models to solve RC problem for the first time.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yixiong Feng ◽  
Chuan He ◽  
Yicong Gao ◽  
Hao Zheng ◽  
Jianrong Tan

Purpose To find the system with minimum investment and best quality performance that is capable of producing all of the product variants, assessing the complexity of designing assembly system at the early concept stage is an essential step, which helps and instructs a designer to create a product- and system-oriented assembly solution with the least complexity. The purpose of this paper is to propose a quantifying measurement of complexity in the design of a modular automated assembly system. Design/methodology/approach The configurable assembly system is becoming a trend, which enables companies to quickly respond to changes caused by different product variants but without a large investment. One of the enabling factors is the availability of modular solutions of assembly modules that can be configured according to different technical requirements. This paper develops a methodology using fuzzy evaluation to calculate the design complexity in the design phase for a modular automatic assembly system. Fuzzy linguistic variables are used to measure the interaction among the influence factors, to deal with the uncertainty of the judgement. The proposed method investigates three matrices to present how the function-based assembly modules, design complexity factors, part attributes and product components, which are regarded as the main influence factors, complicate the construction of a modular assembly system. The design complexity is derived and quantified based on these assessments. Findings The proposed approach presents a formal quantification to evaluate the design complexity with regard to a modular assembly system from beginning, which can be identified and used as criteria to indicate the quality of performance and investment cost in advance. A mathematical model based on the fuzzy logic is established to provide both theoretical and practical guidance for the paper. To validate the predictive model, the statistic relationships between the assessed system design complexity, real assembly defect rate and investment cost are estimated based on regression analysis. The application of the presented methodology is demonstrated with regard to a traditional rear drive unit in the automotive industry. Originality/value This paper presents a developed method, which addresses the measures of complexity found in the design of a modular assembly system. It would help to run the design process with better resource allocation and cost estimation in a quantitative approach.


Author(s):  
Kazuhiro Aoyama ◽  
Yoshihiro Uchibori ◽  
Kazuya Oizumi ◽  
Shigeki Hiramatsu ◽  
Hiroshi Unesaki ◽  
...  

Abstract In this study, following the concept of set-based design, after preparing global calculation results, we introduced the approach of setting the design solution area that satisfies the product performance goals of the system design. In this approach, from the viewpoint of considering uncertainty, we aimed to develop an analysis method that can get the organic relationship between target variables and design variables. And more, under the assumption that it is difficult to comprehend the full picture of products that are becoming more sophisticated and complex with the knowledge that has been fostered by skilled engineers, the proposed system uses the objective calculation indices that is provided knowledge of the designer. Specifically, the following method are proposed to solve the problem. - Implementation of meta-modeling of design space. - Classified solution space using a density-based clustering method to detect that the solution spaces are divided into multiple disconnected space. - Defined an index called distribution concentration and expressed the possibility of dealing with the uncertainty of the solution domain. - The network diagram based on the calculated index values was proposed to confirm the change in the characteristics of the solution space when the performance target of the product was changed. Finally, the effectiveness of the proposed method was verified by applying it to actual simulation results.


2017 ◽  
Vol 28 (5) ◽  
pp. 610-630 ◽  
Author(s):  
Narges Asadi ◽  
Mats Jackson ◽  
Anders Fundin

Purpose The recent shift towards accommodating flexibility in manufacturing companies and the complexity resulting from product variety highlight the significance of flexible assembly systems and designing products for them. The purpose of this paper is to provide insight into the requirements of a flexible assembly system for product design from the assembly system’s standpoint. Design/methodology/approach To fulfil the purpose of the paper, a literature review and a case study were performed. The case study was conducted with an interactive research approach in a global market leader company within the heavy vehicle manufacturing industry. Findings The findings indicate that common assembly sequence, similar assembly interfaces, and common parts are the main requirements of a flexible assembly system for product design which reduce complexity and facilitate various flexibility dimensions. Accordingly, a model is proposed to broaden the understanding of these requirements from the assembly system’s standpoint. Research limitations/implications This study contributes to the overlapping research area of flexible assembly systems and product design. Practical implications The proposed model is largely based on practical data and clarifies the role of product design in facilitating flexibility in an assembly system. It can be used by assembly managers, assembly engineers, and product designers. Originality/value The key originality of this paper compared to the previous studies lies in presenting a novel assembly-oriented design model. The model enhances understanding of a flexible assembly system’s requirements for product design with regard to reducing complexity and managing variation in a flexible assembly system. These requirements can be applied to product design across various product families within a company’s product portfolio.


Procedia CIRP ◽  
2021 ◽  
Vol 97 ◽  
pp. 313-318
Author(s):  
Peter Burggräf ◽  
Matthias Dannapfel ◽  
Tobias Adlon ◽  
Katharina Müller

2019 ◽  
Vol 39 (2) ◽  
pp. 262-271
Author(s):  
Yukan Hou ◽  
Yuan Li ◽  
Yuntian Ge ◽  
Jie Zhang ◽  
Shoushan Jiang

Purpose The purpose of this paper is to present an analytical method for throughput analysis of assembly systems with complex structures during transients. Design/methodology/approach Among the existing studies on the performance evaluation of assembly systems, most focus on the system performance in steady state. Inspired by the transient analysis of serial production lines, the state transition matrix is derived considering the characteristics of merging structure in assembly systems. The system behavior during transients is described by an ergodic Markov chain, with the states being the occupancy of all buffers. The dynamic model for the throughput analysis is solved using the fixed-point theory. Findings This method can be used to predict and evaluate the throughput performance of assembly systems in both transient and steady state. By comparing the model calculation results with the simulation results, this method is proved to be accurate. Originality/value This proposed modeling method can depict the throughput performance of assembly systems in both transient and steady state, whereas most exiting methods can be used for only steady-state analysis. In addition, this method shows the potential for the analysis of complex structured assembly systems owing to the low computational complexity.


Sign in / Sign up

Export Citation Format

Share Document